Inverse Galois Theory

This second edition addresses the question of which finite groups occur as Galois groups over a given field. In particular, this includes the question of the structure and the representations of the absolute Galois group of K, as well as its finite epimorphic images, generally referred to as the inv...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Malle, Gunter (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Berlin, Heidelberg : Springer Berlin Heidelberg , 2018.
Vydání:2nd ed. 2018.
Edice:Springer Monographs in Mathematics,
Témata:
ISBN:9783662554203
ISSN:1439-7382
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101125.0
007 cr nn 008mamaa
008 180727s2018 gw | s |||| 0|eng d
020 |a 9783662554203 
024 7 |a 10.1007/978-3-662-55420-3  |2 doi 
035 |a CVTIDW10809 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Malle, Gunter.  |4 aut 
245 1 0 |a Inverse Galois Theory   |h [electronic resource] /  |c by Gunter Malle, B. Heinrich Matzat. 
250 |a 2nd ed. 2018. 
260 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg ,  |c 2018. 
300 |a XVII, 533 p.  |b online resource. 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
500 |a Mathematics and Statistics  
505 0 |a I.The Rigidity Method -- II. Applications of Rigidity -- III. Action of Braids -- IV. Embedding Problems -- V. Additive Polynomials -- VI.Rigid Analytic Methods -- Appendix: Example Polynomials -- References -- Index. 
516 |a text file PDF 
520 |a This second edition addresses the question of which finite groups occur as Galois groups over a given field. In particular, this includes the question of the structure and the representations of the absolute Galois group of K, as well as its finite epimorphic images, generally referred to as the inverse problem of Galois theory. In the past few years, important strides have been made in all of these areas. The aim of the book is to provide a systematic and extensive overview of these advances, with special emphasis on the rigidity method and its applications. Among others, the book presents the most successful known existence theorems and construction methods for Galois extensions and solutions of embedding problems, together with a collection of the current Galois realizations. There have been two major developments since the first edition of this book was released. The first is the algebraization of the Katz algorithm for (linearly) rigid generating systems of finite groups; the second is the emergence of a modular Galois theory. The latter has led to new construction methods for additive polynomials with given Galois group over fields of positive characteristic. Both methods have their origin in the Galois theory of differential and difference equations. 
650 0 |a Group theory. 
650 0 |a Topology. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-662-55420-3  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08089 
919 |a 978-3-662-55420-3 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236613  |d 236613