Introduction to Geometry and Topology

This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Ballmann, Werner (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Basel : Springer Basel, 2018.
Vydání:1st ed. 2018.
Edice:Compact Textbooks in Mathematics,
Témata:
ISBN:9783034809832
ISSN:2296-4568
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101051.0
007 cr nn 008mamaa
008 180718s2018 sz | s |||| 0|eng d
020 |a 9783034809832 
024 7 |a 10.1007/978-3-0348-0983-2  |2 doi 
035 |a CVTIDW10757 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Ballmann, Werner.  |4 aut 
245 1 0 |a Introduction to Geometry and Topology  |h [electronic resource] /  |c by Werner Ballmann. 
250 |a 1st ed. 2018. 
260 1 |a Basel :  |b Springer Basel,  |c 2018. 
300 |a X, 169 p. 28 illus., 20 illus. in color.  |b online resource. 
490 1 |a Compact Textbooks in Mathematics,  |x 2296-4568 
500 |a Mathematics and Statistics  
505 0 |a I. First Steps in the Topology -- II. Manifolds -- III. Differential Forms and Cohomology -- IV. Geometry of Submanifolds -- A. Alternating Multilinear Forms -- B. Cochain Complexes -- Bibliography -- Index. 
516 |a text file PDF 
520 |a This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Differential geometry. 
650 0 |a Global analysis (Mathematics). 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-0348-0983-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08037 
919 |a 978-3-0348-0983-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236478  |d 236478