The Language of Self-Avoiding Walks Connective Constants of Quasi-Transitive Graphs /

The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be us...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Lindorfer, Christian (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Wiesbaden : Springer Fachmedien Wiesbaden : Spektrum, 2018.
Vydání:1st ed. 2018.
Edice:BestMasters,
Témata:
ISBN:9783658247645
ISSN:2625-3577
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101048.0
007 cr nn 008mamaa
008 190107s2018 gw | s |||| 0|eng d
020 |a 9783658247645 
024 7 |a 10.1007/978-3-658-24764-5  |2 doi 
035 |a CVTIDW11028 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Lindorfer, Christian.  |4 aut 
245 1 4 |a The Language of Self-Avoiding Walks  |h [electronic resource] :  |b Connective Constants of Quasi-Transitive Graphs /  |c by Christian Lindorfer. 
250 |a 1st ed. 2018. 
260 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b  Spektrum,  |c 2018. 
300 |a XI, 65 p. 1 illus.  |b online resource. 
490 1 |a BestMasters,  |x 2625-3577 
500 |a Mathematics and Statistics  
505 0 |a Graph Height Functions and Bridges -- Self-Avoiding Walks on One-Dimensional Lattices -- The Algebraic Theory of Context-Free Languages -- The Language of Walks on Edge-Labelled Graphs. 
516 |a text file PDF 
520 |a The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be used to calculate the connective constant of the graph. Christian Lindorfer discusses the methods in some examples, including the infinite ladder-graph and the sandwich of two regular infinite trees. Contents Graph Height Functions and Bridges Self-Avoiding Walks on One-Dimensional Lattices The Algebraic Theory of Context-Free Languages The Language of Walks on Edge-Labelled Graphs Target Groups Researchers and students in the fields of graph theory, formal language theory and combinatorics Experts in these areas The Author Christian Lindorfer wrote his master's thesis under the supervision of Prof. Dr. Wolfgang Woess at the Institute of Discrete Mathematics at Graz University of Technology, Austria. 
650 0 |a Algebra. 
650 0 |a Computer mathematics. 
650 0 |a Geometry. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-658-24764-5  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08308 
919 |a 978-3-658-24764-5 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236468  |d 236468