NEO 2016 Results of the Numerical and Evolutionary Optimization Workshop NEO 2016 and the NEO Cities 2016 Workshop held on September 20-24, 2016 in Tlalnepantla, Mexico /

This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO 2016) workshop held in September 2016 in Tlalnepantla, Mexico. The development of powerful search and optimization techniques is of great importance in today's world and requires researchers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Studies in Computational Intelligence, 731
Schlagworte:
ISBN:9783319640631
ISSN:1860-949X ;
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101034.0
007 cr nn 008mamaa
008 170913s2018 gw | s |||| 0|eng d
020 |a 9783319640631 
024 7 |a 10.1007/978-3-319-64063-1  |2 doi 
035 |a CVTIDW12025 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
245 1 0 |a NEO 2016  |h [electronic resource] :  |b Results of the Numerical and Evolutionary Optimization Workshop NEO 2016 and the NEO Cities 2016 Workshop held on September 20-24, 2016 in Tlalnepantla, Mexico /  |c edited by Yazmin Maldonado, Leonardo Trujillo, Oliver Schütze, Annalisa Riccardi, Massimiliano Vasile. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIII, 282 p. 146 illus., 124 illus. in color.  |b online resource. 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 731 
500 |a Engineering  
505 0 |a Part I: Smart Cities -- Defensive Driving Strategy and Control for Autonomous Ground Vehicle in Mixed Traffic -- Augmenting the LSA Technique to Evaluate Ubicomp Environments -- Mixed Integer Programming Formulation for the Energy-Efficient Train Timetables Problem -- Distributing Computing in the Internet of Things: Cloud, Fog and Edge Computing Overview -- Part II: Search, Optimization and Hybrid Algorithms -- Integer Programming Models and Heuristics for Non-Crossing Euclidean 3-Matchings -- A Multi-Objective Robust Ellipse Fitting Algorithm -- Gradient-Based Multiobjective Optimization with Uncertainties -- A New Local Search Heuristic for the Multidimensional Assignment Problem -- Part III: Electronics and Embedded Systems -- A Multi-Objective and Multidisciplinary Optimisation Algorithm for Microelectromechanical Systems -- Coefficients Estimation of MPM through LSE, ORLS and SLS for RF-PA Modeling and DPD -- Optimal Sizing of Amplifiers by Evolutionary Algorithms with Integer Encoding and gm/ID Design Method -- Index. . 
516 |a text file PDF 
520 |a This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO 2016) workshop held in September 2016 in Tlalnepantla, Mexico. The development of powerful search and optimization techniques is of great importance in today's world and requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together experts from these and related fields to discuss, compare and merge their complementary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. In doing so, NEO promotes the development of new techniques that are applicable to a broader class of problems. Moreover, NEO fosters the understanding and adequate treatment of real-world problems particularly in emerging fields that affect all of us, such as healthcare, smart cities, big data, among many others. The extended papers presented in the book contribute to achieving this goal. . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Optical data processing. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-64063-1  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09305 
919 |a 978-3-319-64063-1 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236403  |d 236403