An Introduction to Nonlinear Analysis and Fixed Point Theory

This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pathak, Hemant Kumar (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Singapore : Springer Singapore , 2018.
Ausgabe:1st ed. 2018.
Schlagworte:
ISBN:9789811088667
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101021.0
007 cr nn 008mamaa
008 180519s2018 si | s |||| 0|eng d
020 |a 9789811088667 
024 7 |a 10.1007/978-981-10-8866-7  |2 doi 
035 |a CVTIDW10769 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Pathak, Hemant Kumar.  |4 aut 
245 1 3 |a An Introduction to Nonlinear Analysis and Fixed Point Theory  |h [electronic resource] /  |c by Hemant Kumar Pathak. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a XXVII, 830 p. 29 illus.  |b online resource. 
500 |a Mathematics and Statistics  
505 0 |a Chapter 1. Fundamentals -- Chapter 2. Geometry in Banach Spaces and Duality Mappings -- Chapter 3. Differential Calculus in Banach Spaces -- Chapter 4. Monotone Operators, Phi-accretive Operators and Their Generalizations -- Chapter 5. Fixed Point Theorems -- Chapter 6. Degree Theory, K-Set Contractions and Condensing Operators -- Chapter 7. Random Fixed Point Theory and Monotone Operators -- Chapter 8. Applications of Monotone Operator Theory to Differential and Integral Equations -- Chapter 9. Applications of Fixed Point Theorems -- Chapter 10. Applications of Fixed Point Theorems for Multifunction to Integral Inclusions. 
516 |a text file PDF 
520 |a This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in diverse applied fields. It is intended for graduate and undergraduate students of mathematics and engineering who are familiar with discrete mathematical structures, differential and integral equations, operator theory, measure theory, Banach and Hilbert spaces, locally convex topological vector spaces, and linear functional analysis. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-10-8866-7  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08049 
919 |a 978-981-10-8866-7 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236348  |d 236348