Invariant Markov Processes Under Lie Group Actions

The purpose of this monograph is to provide a theory of Markov processes that are invariant under the actions of Lie groups, focusing on ways to represent such processes in the spirit of the classical Lévy-Khinchin representation. It interweaves probability theory, topology, and global analysis on m...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Liao, Ming (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9783319923246
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101008.0
007 cr nn 008mamaa
008 180628s2018 gw | s |||| 0|eng d
020 |a 9783319923246 
024 7 |a 10.1007/978-3-319-92324-6  |2 doi 
035 |a CVTIDW10803 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Liao, Ming.  |4 aut 
245 1 0 |a Invariant Markov Processes Under Lie Group Actions  |h [electronic resource] /  |c by Ming Liao. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIII, 363 p.  |b online resource. 
500 |a Mathematics and Statistics  
505 0 |a Invariant Markov processes under actions of topological groups -- Lévy processes in Lie groups -- Lévy processes in homogeneous spaces -- Lévy processes in compact Lie groups -- Spherical transform and Lévy-Khinchin formula -- Inhomogeneous Lévy processes in Lie groups -- Proofs of main results -- Inhomogenous Lévy processes in homogeneous spaces -- Decomposition of Markov processes -- Appendices -- Bibliography -- Index. 
516 |a text file PDF 
520 |a The purpose of this monograph is to provide a theory of Markov processes that are invariant under the actions of Lie groups, focusing on ways to represent such processes in the spirit of the classical Lévy-Khinchin representation. It interweaves probability theory, topology, and global analysis on manifolds to present the most recent results in a developing area of stochastic analysis. The author's discussion is structured with three different levels of generality: - A Markov process in a Lie group G that is invariant under the left (or right) translations - A Markov process xt in a manifold X that is invariant under the transitive action of a Lie group G on X - A Markov process xt invariant under the non-transitive action of a Lie group G A large portion of the text is devoted to the representation of inhomogeneous Lévy processes in Lie groups and homogeneous spaces by a time dependent triple through a martingale property. Preliminary definitions and results in both stochastics and Lie groups are provided in a series of appendices, making the book accessible to those who may be non-specialists in either of these areas. Invariant Markov Processes Under Lie Group Actions will be of interest to researchers in stochastic analysis and probability theory, and will also appeal to experts in Lie groups, differential geometry, and related topics interested in applications of their own subjects. 
650 0 |a Probabilities. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-92324-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08083 
919 |a 978-3-319-92324-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236292  |d 236292