Mathematical Immunology of Virus Infections
This monograph concisely but thoroughly introduces the reader to the field of mathematical immunology. The book covers first basic principles of formulating a mathematical model, and an outline on data-driven parameter estimation and model selection. The authors then introduce the modeling of experi...
Saved in:
| Main Author: | |
|---|---|
| Format: | Electronic eBook |
| Language: | English |
| Published: |
Cham :
Springer International Publishing,
2018.
|
| Edition: | 1st ed. 2018. |
| Subjects: | |
| ISBN: | 9783319723174 |
| Online Access: |
|
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
| LEADER | 00000nam a22000005i 4500 | ||
|---|---|---|---|
| 003 | SK-BrCVT | ||
| 005 | 20220618100943.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 180612s2018 gw | s |||| 0|eng d | ||
| 020 | |a 9783319723174 | ||
| 024 | 7 | |a 10.1007/978-3-319-72317-4 |2 doi | |
| 035 | |a CVTIDW11439 | ||
| 040 | |a Springer-Nature |b eng |c CVTISR |e AACR2 | ||
| 041 | |a eng | ||
| 100 | 1 | |a Bocharov, Gennady. |4 aut | |
| 245 | 1 | 0 | |a Mathematical Immunology of Virus Infections |h [electronic resource] / |c by Gennady Bocharov, Vitaly Volpert, Burkhard Ludewig, Andreas Meyerhans. |
| 250 | |a 1st ed. 2018. | ||
| 260 | 1 | |a Cham : |b Springer International Publishing, |c 2018. | |
| 300 | |a XV, 245 p. |b online resource. | ||
| 500 | |a Mathematics and Statistics | ||
| 505 | 0 | |a Principles of virus-host interaction -- Basic principles of building a mathematical model of immune response -- Parameter estimation and model selection -- Modelling of experimental infections -- Modelling of human infections -- Spatial modelling using reaction-diffusion systems -- Multi-scale and integrative modelling approaches -- Current challenges. | |
| 516 | |a text file PDF | ||
| 520 | |a This monograph concisely but thoroughly introduces the reader to the field of mathematical immunology. The book covers first basic principles of formulating a mathematical model, and an outline on data-driven parameter estimation and model selection. The authors then introduce the modeling of experimental and human infections and provide the reader with helpful exercises. The target audience primarily comprises researchers and graduate students in the field of mathematical biology who wish to be concisely introduced into mathematical immunology. . | ||
| 650 | 0 | |a Biomathematics. | |
| 650 | 0 | |a Immunology. | |
| 650 | 0 | |a Biomedical engineering. | |
| 650 | 0 | |a Statistics . | |
| 650 | 0 | |a Neural networks (Computer science) . | |
| 856 | 4 | 0 | |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-72317-4 |y Vzdialený prístup pre registrovaných používateľov |
| 910 | |b ZE08719 | ||
| 919 | |a 978-3-319-72317-4 | ||
| 974 | |a andrea.lebedova |f Elektronické zdroje | ||
| 992 | |a SUD | ||
| 999 | |c 236167 |d 236167 | ||

