Introduction to Deep Learning Business Applications for Developers From Conversational Bots in Customer Service to Medical Image Processing /

Discover the potential applications, challenges, and opportunities of deep learning from a business perspective with technical examples. These applications include image recognition, segmentation and annotation, video processing and annotation, voice recognition, intelligent personal assistants, aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Vieira, Armando (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Berkeley, CA : Apress, 2018.
Ausgabe:1st ed. 2018.
Schlagworte:
ISBN:9781484234532
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618100941.0
007 cr nn 008mamaa
008 180502s2018 xxu| s |||| 0|eng d
020 |a 9781484234532 
024 7 |a 10.1007/978-1-4842-3453-2  |2 doi 
035 |a CVTIDW10748 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Vieira, Armando.  |4 aut 
245 1 0 |a Introduction to Deep Learning Business Applications for Developers  |h [electronic resource] :  |b From Conversational Bots in Customer Service to Medical Image Processing /  |c by Armando Vieira, Bernardete Ribeiro. 
250 |a 1st ed. 2018. 
260 1 |a Berkeley, CA :  |b Apress,  |c 2018. 
300 |a XXI, 343 p. 64 illus.  |b online resource. 
500 |a Professional and Applied Computing  
505 0 |a 1 Introduction -- 2 Deep Learning: An Overview -- 3 Deep Neural Network Models -- 4 Image Processing -- 5 Natural Language Processing and Speech -- 6 Reinforcement Learning and Robotics -- 7 Recommendations Algorithms and Advertising -- 8 Games and Art -- 9 Other Applications -- 10 Business Impact of DL Technology -- 11 New Research and Future Directions -- Appendix Training DNN with Keras. 
516 |a text file PDF 
520 |a Discover the potential applications, challenges, and opportunities of deep learning from a business perspective with technical examples. These applications include image recognition, segmentation and annotation, video processing and annotation, voice recognition, intelligent personal assistants, automated translation, and autonomous vehicles. An Introduction to Deep Learning Business Applications for Developers covers some common DL algorithms such as content-based recommendation algorithms and natural language processing. You'll explore examples, such as video prediction with fully convolutional neural networks (FCNN) and residual neural networks (ResNets). You will also see applications of DL for controlling robotics, exploring the DeepQ learning algorithm with Monte Carlo Tree search (used to beat humans in the game of Go), and modeling for financial risk assessment. There will also be mention of the powerful set of algorithms called Generative Adversarial Neural networks (GANs) that can be applied for image colorization, image completion, and style transfer. After reading this book you will have an overview of the exciting field of deep neural networks and an understanding of most of the major applications of deep learning. The book contains some coding examples, tricks, and insights on how to train deep learning models using the Keras framework. You will: Find out about deep learning and why it is so powerful Work with the major algorithms available to train deep learning models See the major breakthroughs in terms of applications of deep learning Run simple examples with a selection of deep learning libraries Discover the areas of impact of deep learning in business. 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language). 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4842-3453-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08028 
919 |a 978-1-4842-3453-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236157  |d 236157