Updating 'The Future of Coding': Qualitative Coding with Generative Large Language Models

Uloženo v:
Podrobná bibliografie
Název: Updating 'The Future of Coding': Qualitative Coding with Generative Large Language Models
Jazyk: English
Autoři: Nga Than (ORCID 0000-0002-6845-6253), Leanne Fan, Tina Law (ORCID 0000-0001-7631-6763), Laura K. Nelson (ORCID 0000-0001-8948-300X), Leslie McCall (ORCID 0000-0002-7700-3969)
Zdroj: Sociological Methods & Research. 2025 54(3):849-888.
Dostupnost: SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: https://sagepub.com
Peer Reviewed: Y
Page Count: 40
Datum vydání: 2025
Druh dokumentu: Journal Articles
Reports - Research
Descriptors: Artificial Intelligence, Coding, Qualitative Research, Cues, Open Source Technology, Accuracy, Natural Language Processing, Social Science Research
DOI: 10.1177/00491241251339188
ISSN: 0049-1241
1552-8294
Abstrakt: Over the past decade, social scientists have adapted computational methods for qualitative text analysis, with the hope that they can match the accuracy and reliability of hand coding. The emergence of GPT and open-source generative large language models (LLMs) has transformed this process by shifting from programming to engaging with models using natural language, potentially mimicking the in-depth, inductive, and/or iterative process of qualitative analysis. We test the ability of generative LLMs to replicate and augment traditional qualitative coding, experimenting with multiple prompt structures across four closed- and open-source generative LLMs and proposing a workflow for conducting qualitative coding with generative LLMs. We find that LLMs can perform nearly as well as prior supervised machine learning models in accurately matching hand-coding output. Moreover, using generative LLMs as a natural language interlocutor closely replicates traditional qualitative methods, indicating their potential to transform the qualitative research process, despite ongoing challenges.
Abstractor: As Provided
Entry Date: 2025
Přístupové číslo: EJ1475799
Databáze: ERIC
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Than%20N
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: eric
DbLabel: ERIC
An: EJ1475799
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 0
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Updating 'The Future of Coding': Qualitative Coding with Generative Large Language Models
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Nga+Than%22">Nga Than</searchLink> (ORCID <externalLink term="https://orcid.org/0000-0002-6845-6253">0000-0002-6845-6253</externalLink>)<br /><searchLink fieldCode="AR" term="%22Leanne+Fan%22">Leanne Fan</searchLink><br /><searchLink fieldCode="AR" term="%22Tina+Law%22">Tina Law</searchLink> (ORCID <externalLink term="https://orcid.org/0000-0001-7631-6763">0000-0001-7631-6763</externalLink>)<br /><searchLink fieldCode="AR" term="%22Laura+K%2E+Nelson%22">Laura K. Nelson</searchLink> (ORCID <externalLink term="https://orcid.org/0000-0001-8948-300X">0000-0001-8948-300X</externalLink>)<br /><searchLink fieldCode="AR" term="%22Leslie+McCall%22">Leslie McCall</searchLink> (ORCID <externalLink term="https://orcid.org/0000-0002-7700-3969">0000-0002-7700-3969</externalLink>)
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <searchLink fieldCode="SO" term="%22Sociological+Methods+%26+Research%22"><i>Sociological Methods & Research</i></searchLink>. 2025 54(3):849-888.
– Name: Avail
  Label: Availability
  Group: Avail
  Data: SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: https://sagepub.com
– Name: PeerReviewed
  Label: Peer Reviewed
  Group: SrcInfo
  Data: Y
– Name: Pages
  Label: Page Count
  Group: Src
  Data: 40
– Name: DatePubCY
  Label: Publication Date
  Group: Date
  Data: 2025
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Journal Articles<br />Reports - Research
– Name: Subject
  Label: Descriptors
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Artificial+Intelligence%22">Artificial Intelligence</searchLink><br /><searchLink fieldCode="DE" term="%22Coding%22">Coding</searchLink><br /><searchLink fieldCode="DE" term="%22Qualitative+Research%22">Qualitative Research</searchLink><br /><searchLink fieldCode="DE" term="%22Cues%22">Cues</searchLink><br /><searchLink fieldCode="DE" term="%22Open+Source+Technology%22">Open Source Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Accuracy%22">Accuracy</searchLink><br /><searchLink fieldCode="DE" term="%22Natural+Language+Processing%22">Natural Language Processing</searchLink><br /><searchLink fieldCode="DE" term="%22Social+Science+Research%22">Social Science Research</searchLink>
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1177/00491241251339188
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 0049-1241<br />1552-8294
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: Over the past decade, social scientists have adapted computational methods for qualitative text analysis, with the hope that they can match the accuracy and reliability of hand coding. The emergence of GPT and open-source generative large language models (LLMs) has transformed this process by shifting from programming to engaging with models using natural language, potentially mimicking the in-depth, inductive, and/or iterative process of qualitative analysis. We test the ability of generative LLMs to replicate and augment traditional qualitative coding, experimenting with multiple prompt structures across four closed- and open-source generative LLMs and proposing a workflow for conducting qualitative coding with generative LLMs. We find that LLMs can perform nearly as well as prior supervised machine learning models in accurately matching hand-coding output. Moreover, using generative LLMs as a natural language interlocutor closely replicates traditional qualitative methods, indicating their potential to transform the qualitative research process, despite ongoing challenges.
– Name: AbstractInfo
  Label: Abstractor
  Group: Ab
  Data: As Provided
– Name: DateEntry
  Label: Entry Date
  Group: Date
  Data: 2025
– Name: AN
  Label: Accession Number
  Group: ID
  Data: EJ1475799
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=eric&AN=EJ1475799
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1177/00491241251339188
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 40
        StartPage: 849
    Subjects:
      – SubjectFull: Artificial Intelligence
        Type: general
      – SubjectFull: Coding
        Type: general
      – SubjectFull: Qualitative Research
        Type: general
      – SubjectFull: Cues
        Type: general
      – SubjectFull: Open Source Technology
        Type: general
      – SubjectFull: Accuracy
        Type: general
      – SubjectFull: Natural Language Processing
        Type: general
      – SubjectFull: Social Science Research
        Type: general
    Titles:
      – TitleFull: Updating 'The Future of Coding': Qualitative Coding with Generative Large Language Models
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Nga Than
      – PersonEntity:
          Name:
            NameFull: Leanne Fan
      – PersonEntity:
          Name:
            NameFull: Tina Law
      – PersonEntity:
          Name:
            NameFull: Laura K. Nelson
      – PersonEntity:
          Name:
            NameFull: Leslie McCall
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 08
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 0049-1241
            – Type: issn-electronic
              Value: 1552-8294
          Numbering:
            – Type: volume
              Value: 54
            – Type: issue
              Value: 3
          Titles:
            – TitleFull: Sociological Methods & Research
              Type: main
ResultId 1