Novel Strategies to Improve the Efficiency and Stability of Binary-Based Organic Photovoltaic Devices

Saved in:
Bibliographic Details
Title: Novel Strategies to Improve the Efficiency and Stability of Binary-Based Organic Photovoltaic Devices
Authors: Abdelghafar, Enas Moustafa Mohamed
Contributors: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica
Thesis Advisors: Marsal Garví, Luis Francisco
Source: TDX (Tesis Doctorals en Xarxa)
Publisher Information: Universitat Rovira i Virgili, 2023.
Publication Year: 2023
Physical Description: 270 p.
Subject Terms: Organic Photovoltaics, Thermal treatment, Spray pyrolysis, Ciències
Time: 621.3
Description: The power conversion efficiency (PCE) of organic solar cells (OPVs) has been promptly improved once emerging the recently developed non-fullerene small-molecules acceptors (NFAs), approaching PCE of 20%. This remarkable increase in the power conversion efficiencies was due to the significant enhancement in the light absorption along with diminishing the energy losses, particularly upon minimizing the trade-off behavior between voltage loss and charge generation in nonfullerene organic solar cells (NF–OPVs). Despite the efficiency, long lization of OPVs. Severalstrategies have been investigated to understand the intrinsic photo-degradation mechanism in order to overcome this recent demanding subject. Some of these avenues concern the stability of the bulk-heterojunction photoactive blend microstructure through additives modifications to tune the properties of the photo-active layer.In this thesis, we combined the interfacial engineering, morphology control, and third component strategies to improve the OPV devices performance and stability. First, we conducted an intermittent spray pyrolysis approach to deposit the ZnO interfacial layers in fullerene based inverted OPVs. It significantly enhanced the interface morphology, resulting in remarkable stability behaviour of the sprayed devices. Then, we focused on optimizing the blend morphology based on the NFOPV devices through additives and thermal treatment.
Document Type: Dissertation/Thesis
File Description: application/pdf
Language: English
Access URL: http://hdl.handle.net/10803/688546
Rights: ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
Accession Number: edstdx.10803.688546
Database: TDX
Description
Abstract:The power conversion efficiency (PCE) of organic solar cells (OPVs) has been promptly improved once emerging the recently developed non-fullerene small-molecules acceptors (NFAs), approaching PCE of 20%. This remarkable increase in the power conversion efficiencies was due to the significant enhancement in the light absorption along with diminishing the energy losses, particularly upon minimizing the trade-off behavior between voltage loss and charge generation in nonfullerene organic solar cells (NF–OPVs). Despite the efficiency, long lization of OPVs. Severalstrategies have been investigated to understand the intrinsic photo-degradation mechanism in order to overcome this recent demanding subject. Some of these avenues concern the stability of the bulk-heterojunction photoactive blend microstructure through additives modifications to tune the properties of the photo-active layer.In this thesis, we combined the interfacial engineering, morphology control, and third component strategies to improve the OPV devices performance and stability. First, we conducted an intermittent spray pyrolysis approach to deposit the ZnO interfacial layers in fullerene based inverted OPVs. It significantly enhanced the interface morphology, resulting in remarkable stability behaviour of the sprayed devices. Then, we focused on optimizing the blend morphology based on the NFOPV devices through additives and thermal treatment.