Spectral analysis of executions of computer programs and its applications on performance analysis

Saved in:
Bibliographic Details
Title: Spectral analysis of executions of computer programs and its applications on performance analysis
Authors: Casas Guix, Marc
Contributors: University/Department: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Thesis Advisors: Badia Sala, Rosa M. (Rosa Maria), Labarta Mancho, Jesús
Source: TDX (Tesis Doctorals en Xarxa)
Publisher Information: Universitat Politècnica de Catalunya, 2010.2010.2010.
Publication Year: 2010
Publication Year: 2010
Publication Year: 2010
Original Identifier: B.11714-2011
Subject Terms: spectral analysis, performance analysis, message passing programs, signal processing
Description: This work is motivated by the growing intricacy of high performance computing infrastructures. For example, supercomputer MareNostrum (installed in 2005 at BSC) has 10240 processors and currently there are machines with more than 100.000 processors. The complexity of this systems increases the complexity of the manual performance analysis of parallel applications. For this reason, it is mandatory to use automatic tools and methodologies.The performance analysis group of BSC and UPC has a large experience in analyzing parallel applications. The approach of this group consists mainly in the analysis of tracefiles (obtained from parallel applications executions) using performance analysis and visualization tools, such as Paraver. Taking into account the general characteristics of the current systems, this method can sometimes be very expensive in terms of time and inefficient. To overcome these problems, this thesis makes several contributions.The first one is an automatic system able to detect the internal structure of executions of high performance computing applications. This automatic system is able to rule out nonsignificant regions of executions, to detect redundancies and, finally, to select small but significant execution regions. This automatic detection process is based on spectral analysis (wavelet transform, fourier transform, etc..) and works detecting the most important frequencies of the application's execution. These main frequencies are strongly related to the internal loops of the application' source code. Finally, it is important to state that an automatic detection of small but significant execution regions reduces remarkably the complexity of the performance analysis process.The second contribution is an automatic methodology able to show general but nontrivial performance trends. They can be very useful for the analyst in order to carry out a performance analysis of the application. The automatic methodology is based on an analytical model. This model consists in several performance factors. Such factors modify the value of the linear speedup in order to fit the real speedup. That is, if this real speedup is far from the linear one, we will detect immediately which one of the performance factors is undermining the scalability of the application. The second main characteristic of the analytical model is that it can be used to predict the performance of high performance computing applications. From several execution on a few of processors, we extract model's performance factors and we extrapolate these values to executions on higher number of processors. Finally, we obtain a speedup prediction using the analytical model.The third contribution is the automatic detection of the optimal sampling frequency of applications. We show that it is possible to extract this frequency using spectral analysis. In case of sequential applications, we show that to use this frequency improves existing results of recognized techniques focused on the reduction of serial application's instruction execution stream (SimPoint, Smarts, etc..). In case of parallel benchmarks, we show that the optimal frequency is very useful to extract significant performance information very efficiently and accurately.In summary, this thesis proposes a set of techniques based on signal processing. The main focus of these techniques is to perform an automatic analysis of the applications, reporting and initial diagnostic of their performance and showing their internal iterative structure. Finally, these methods also provide a reduced tracefile from which it is easy to start manual finegrain performance analysis. The contributions of the thesis are not reduced to proposals and publications. The research carried out these last years has provided a tool for analyzing applications' structure. Even more, the methodology is general and it can be adapted to many performance analysis methods, improving remarkably their efficiency, flexibility and generality.
Description (Translated): DOCTORAT EN ARQUITECTURA I TECNOLOGIA DE COMPUTADORS (Pla 1998)
Document Type: Dissertation/Thesis
File Description: application/pdf
Language: English
ISBN: 978-84-694-0428-7
84-694-0428-8
DOI: 10.5821/dissertation-2117-93331
Access URL: http://www.tdx.cat/TDX-1118110-122733
http://hdl.handle.net/10803/6017
https://dx.doi.org/10.5821/dissertation-2117-93331
Rights: ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
Accession Number: edstdx.10803.6017
Database: TDX
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://www.tdx.cat/TDX-1118110-122733#
    Name: EDS - TDX (s4221598)
    Category: fullText
    Text: View record in TDX
Header DbId: edstdx
DbLabel: TDX
An: edstdx.10803.6017
RelevancyScore: 1246
AccessLevel: 3
PubType: Dissertation/ Thesis
PubTypeId: dissertation
PreciseRelevancyScore: 1245.82263183594
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Spectral analysis of executions of computer programs and its applications on performance analysis
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Casas+Guix%2C+Marc%22">Casas Guix, Marc</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: University/Department: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
– Name: Author
  Label: Thesis Advisors
  Group: Au
  Data: Badia Sala, Rosa M. (Rosa Maria)<br />Labarta Mancho, Jesús
– Name: TitleSource
  Label: Source
  Group: Src
  Data: TDX (Tesis Doctorals en Xarxa)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Universitat Politècnica de Catalunya, 2010.2010.2010.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2010
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2010
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2010
– Name: AN
  Label: Original Identifier
  Group: ID
  Data: B.11714-2011
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22spectral+analysis%22">spectral analysis</searchLink><br /><searchLink fieldCode="DE" term="%22performance+analysis%22">performance analysis</searchLink><br /><searchLink fieldCode="DE" term="%22message+passing+programs%22">message passing programs</searchLink><br /><searchLink fieldCode="DE" term="%22signal+processing%22">signal processing</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This work is motivated by the growing intricacy of high performance computing infrastructures. For example, supercomputer MareNostrum (installed in 2005 at BSC) has 10240 processors and currently there are machines with more than 100.000 processors. The complexity of this systems increases the complexity of the manual performance analysis of parallel applications. For this reason, it is mandatory to use automatic tools and methodologies.The performance analysis group of BSC and UPC has a large experience in analyzing parallel applications. The approach of this group consists mainly in the analysis of tracefiles (obtained from parallel applications executions) using performance analysis and visualization tools, such as Paraver. Taking into account the general characteristics of the current systems, this method can sometimes be very expensive in terms of time and inefficient. To overcome these problems, this thesis makes several contributions.The first one is an automatic system able to detect the internal structure of executions of high performance computing applications. This automatic system is able to rule out nonsignificant regions of executions, to detect redundancies and, finally, to select small but significant execution regions. This automatic detection process is based on spectral analysis (wavelet transform, fourier transform, etc..) and works detecting the most important frequencies of the application's execution. These main frequencies are strongly related to the internal loops of the application' source code. Finally, it is important to state that an automatic detection of small but significant execution regions reduces remarkably the complexity of the performance analysis process.The second contribution is an automatic methodology able to show general but nontrivial performance trends. They can be very useful for the analyst in order to carry out a performance analysis of the application. The automatic methodology is based on an analytical model. This model consists in several performance factors. Such factors modify the value of the linear speedup in order to fit the real speedup. That is, if this real speedup is far from the linear one, we will detect immediately which one of the performance factors is undermining the scalability of the application. The second main characteristic of the analytical model is that it can be used to predict the performance of high performance computing applications. From several execution on a few of processors, we extract model's performance factors and we extrapolate these values to executions on higher number of processors. Finally, we obtain a speedup prediction using the analytical model.The third contribution is the automatic detection of the optimal sampling frequency of applications. We show that it is possible to extract this frequency using spectral analysis. In case of sequential applications, we show that to use this frequency improves existing results of recognized techniques focused on the reduction of serial application's instruction execution stream (SimPoint, Smarts, etc..). In case of parallel benchmarks, we show that the optimal frequency is very useful to extract significant performance information very efficiently and accurately.In summary, this thesis proposes a set of techniques based on signal processing. The main focus of these techniques is to perform an automatic analysis of the applications, reporting and initial diagnostic of their performance and showing their internal iterative structure. Finally, these methods also provide a reduced tracefile from which it is easy to start manual finegrain performance analysis. The contributions of the thesis are not reduced to proposals and publications. The research carried out these last years has provided a tool for analyzing applications' structure. Even more, the methodology is general and it can be adapted to many performance analysis methods, improving remarkably their efficiency, flexibility and generality.
– Name: Abstract
  Label: Description (Translated)
  Group: Ab
  Data: DOCTORAT EN ARQUITECTURA I TECNOLOGIA DE COMPUTADORS (Pla 1998)
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Dissertation/Thesis
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/pdf
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISBN
  Label: ISBN
  Group: ISBN
  Data: 978-84-694-0428-7<br />84-694-0428-8
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.5821/dissertation-2117-93331
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://www.tdx.cat/TDX-1118110-122733" linkWindow="_blank">http://www.tdx.cat/TDX-1118110-122733</link><br /><link linkTarget="URL" linkTerm="http://hdl.handle.net/10803/6017" linkWindow="_blank">http://hdl.handle.net/10803/6017</link><br /><link linkTarget="URL" linkTerm="https://dx.doi.org/10.5821/dissertation-2117-93331" linkWindow="_blank">https://dx.doi.org/10.5821/dissertation-2117-93331</link>
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edstdx.10803.6017
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edstdx&AN=edstdx.10803.6017
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.5821/dissertation-2117-93331
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: spectral analysis
        Type: general
      – SubjectFull: performance analysis
        Type: general
      – SubjectFull: message passing programs
        Type: general
      – SubjectFull: signal processing
        Type: general
    Titles:
      – TitleFull: Spectral analysis of executions of computer programs and its applications on performance analysis
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Casas Guix, Marc
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 19
              M: 11
              Type: published
              Y: 2010
          Identifiers:
            – Type: isbn-print
              Value: 9788469404287
            – Type: isbn-print
              Value: 8469404288
ResultId 1