A machine learning method for the recognition of ship behavior using AIS data

Gespeichert in:
Bibliographische Detailangaben
Titel: A machine learning method for the recognition of ship behavior using AIS data
Autoren: Ma, Quandang, Lian, Sunrong, Zhang, Dingze, Lang, Xiao, 1992, Rong, Hao, Mao, Wengang, 1980, Zhang, Mingyang
Quelle: Ocean Engineering. 315
Schlagwörter: AIS data processing, Machine learning, Ship behavior recognition, Clustering algorithm, Maritime traffic safety
Beschreibung: The efficiency of maritime traffic management and the safety of ship navigation have become top priorities. This study introduces a ship behavior recognition method that utilizes the Extreme Gradient Boosting (XGBoost) classification model, in conjunction with the Sparrow Search Algorithm (SSA), to enhance proactive maritime traffic management. The method leverages Automatic Identification System (AIS) data as its primary source and involves several critical steps. Initially, the AIS data is preprocessed, and ship behaviors are encoded. Subsequently, the encoded behaviors are clustered using spectral clustering to create a labeled dataset. Then, this dataset is employed to train and validate the SSA-XGBoost classification algorithm for identifying ship behaviors. Finally, an example analysis is performed in the Yangtze River. The results indicate that the proposed method can accurately and swiftly identify ship behaviors, achieving an accuracy of 97.28%, precision of 96.97%, recall of 97.43%, and an F1 score of 97.19%, surpassing the performance of the existing algorithms. The findings have the potential to aid maritime supervision authorities in promptly assessing ship navigation statuses and provide a valuable reference for developing ship scheduling decisions.
Dateibeschreibung: electronic
Zugangs-URL: https://research.chalmers.se/publication/544075
https://research.chalmers.se/publication/544075/file/544075_Fulltext.pdf
Datenbank: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/544075#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=00298018&ISBN=&volume=315&issue=&date=20250101&spage=&pages=&title=Ocean Engineering&atitle=A%20machine%20learning%20method%20for%20the%20recognition%20of%20ship%20behavior%20using%20AIS%20data&aulast=Ma%2C%20Quandang&id=DOI:10.1016/j.oceaneng.2024.119791
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Ma%20Q
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.fd1549b9.3afb.4444.81ca.e82a5465a24e
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A machine learning method for the recognition of ship behavior using AIS data
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Ma%2C+Quandang%22">Ma, Quandang</searchLink><br /><searchLink fieldCode="AR" term="%22Lian%2C+Sunrong%22">Lian, Sunrong</searchLink><br /><searchLink fieldCode="AR" term="%22Zhang%2C+Dingze%22">Zhang, Dingze</searchLink><br /><searchLink fieldCode="AR" term="%22Lang%2C+Xiao%22">Lang, Xiao</searchLink>, 1992<br /><searchLink fieldCode="AR" term="%22Rong%2C+Hao%22">Rong, Hao</searchLink><br /><searchLink fieldCode="AR" term="%22Mao%2C+Wengang%22">Mao, Wengang</searchLink>, 1980<br /><searchLink fieldCode="AR" term="%22Zhang%2C+Mingyang%22">Zhang, Mingyang</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Ocean Engineering</i>. 315
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22AIS+data+processing%22">AIS data processing</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+learning%22">Machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22Ship+behavior+recognition%22">Ship behavior recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Clustering+algorithm%22">Clustering algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22Maritime+traffic+safety%22">Maritime traffic safety</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The efficiency of maritime traffic management and the safety of ship navigation have become top priorities. This study introduces a ship behavior recognition method that utilizes the Extreme Gradient Boosting (XGBoost) classification model, in conjunction with the Sparrow Search Algorithm (SSA), to enhance proactive maritime traffic management. The method leverages Automatic Identification System (AIS) data as its primary source and involves several critical steps. Initially, the AIS data is preprocessed, and ship behaviors are encoded. Subsequently, the encoded behaviors are clustered using spectral clustering to create a labeled dataset. Then, this dataset is employed to train and validate the SSA-XGBoost classification algorithm for identifying ship behaviors. Finally, an example analysis is performed in the Yangtze River. The results indicate that the proposed method can accurately and swiftly identify ship behaviors, achieving an accuracy of 97.28%, precision of 96.97%, recall of 97.43%, and an F1 score of 97.19%, surpassing the performance of the existing algorithms. The findings have the potential to aid maritime supervision authorities in promptly assessing ship navigation statuses and provide a valuable reference for developing ship scheduling decisions.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/544075" linkWindow="_blank">https://research.chalmers.se/publication/544075</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/544075/file/544075_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/544075/file/544075_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.fd1549b9.3afb.4444.81ca.e82a5465a24e
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.oceaneng.2024.119791
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: AIS data processing
        Type: general
      – SubjectFull: Machine learning
        Type: general
      – SubjectFull: Ship behavior recognition
        Type: general
      – SubjectFull: Clustering algorithm
        Type: general
      – SubjectFull: Maritime traffic safety
        Type: general
    Titles:
      – TitleFull: A machine learning method for the recognition of ship behavior using AIS data
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Ma, Quandang
      – PersonEntity:
          Name:
            NameFull: Lian, Sunrong
      – PersonEntity:
          Name:
            NameFull: Zhang, Dingze
      – PersonEntity:
          Name:
            NameFull: Lang, Xiao
      – PersonEntity:
          Name:
            NameFull: Rong, Hao
      – PersonEntity:
          Name:
            NameFull: Mao, Wengang
      – PersonEntity:
          Name:
            NameFull: Zhang, Mingyang
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 00298018
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 315
          Titles:
            – TitleFull: Ocean Engineering
              Type: main
ResultId 1