Time- and Computation-Efficient Data Localization at Vehicular Networks' Edge
Saved in:
| Title: | Time- and Computation-Efficient Data Localization at Vehicular Networks' Edge |
|---|---|
| Authors: | Duvignau, Romaric, 1989, Havers, Bastian, 1991, Gulisano, Vincenzo Massimiliano, 1984, Papatriantafilou, Marina, 1966 |
| Source: | AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman BADA - On-board Off-board Distributed Data Analytics IEEE Access Time- and Computation-Efficient Data Localization in Vehicular Networks’ Edge - Public code repository. 9:137714-137732 |
| Subject Terms: | Connected vehicles, Query processing, Edge computing, Data Analysis |
| Description: | As Vehicular Networks rely increasingly on sensed data to enhance functionality and safety, efficient and distributed data analysis is needed to effectively leverage new technologies in real-world applications. Considering the tens of GBs per hour sensed by modern connected vehicles, traditional analysis, based on global data accumulation, can rapidly exhaust the capacity of the underlying network, becoming increasingly costly, slow, or even infeasible. Employing the edge processing paradigm, which aims at alleviating this drawback by leveraging vehicles' computational power, we are the first to study how to localize, efficiently and distributively, relevant data in a vehicular fleet for analysis applications. This is achieved by appropriate methods to spread requests across the fleet, while efficiently balancing the time needed to identify relevant vehicles, and the computational overhead induced on the Vehicular Network. We evaluate our techniques using two large sets of real-world data in a realistic environment where vehicles join or leave the fleet during the distributed data localization process. As we show, our algorithms are both efficient and configurable, outperforming the baseline algorithms by up to a 40× speedup while reducing computational overhead by up to 3× , while providing good estimates for the fraction of vehicles with relevant data and fairly spreading the workload over the fleet. All code as well as detailed instructions are available at https://github.com/dcs-chalmers/dataloc_vn. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/526437 https://research.chalmers.se/publication/526686 https://research.chalmers.se/publication/526686/file/526686_Fulltext.pdf |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/526437# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=21693536&ISBN=&volume=9&issue=&date=20210101&spage=137714&pages=137714-137732&title=AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman BADA - On-board Off-board Distributed Data Analytics IEEE Access Time- and Computation-Efficient Data Localization in Vehicular Networks’ Edge - Public code repository&atitle=Time-%20and%20Computation-Efficient%20Data%20Localization%20at%20Vehicular%20Networks%27%20Edge&aulast=Duvignau%2C%20Romaric&id=DOI:10.1109/ACCESS.2021.3118596 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Duvignau%20R Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.f7c5f58e.e18a.4c57.a17c.c269a965e03a RelevancyScore: 1004 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1004.00384521484 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Time- and Computation-Efficient Data Localization at Vehicular Networks' Edge – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Duvignau%2C+Romaric%22">Duvignau, Romaric</searchLink>, 1989<br /><searchLink fieldCode="AR" term="%22Havers%2C+Bastian%22">Havers, Bastian</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Gulisano%2C+Vincenzo+Massimiliano%22">Gulisano, Vincenzo Massimiliano</searchLink>, 1984<br /><searchLink fieldCode="AR" term="%22Papatriantafilou%2C+Marina%22">Papatriantafilou, Marina</searchLink>, 1966 – Name: TitleSource Label: Source Group: Src Data: <i>AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman BADA - On-board Off-board Distributed Data Analytics IEEE Access Time- and Computation-Efficient Data Localization in Vehicular Networks’ Edge - Public code repository</i>. 9:137714-137732 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Connected+vehicles%22">Connected vehicles</searchLink><br /><searchLink fieldCode="DE" term="%22Query+processing%22">Query processing</searchLink><br /><searchLink fieldCode="DE" term="%22Edge+computing%22">Edge computing</searchLink><br /><searchLink fieldCode="DE" term="%22Data+Analysis%22">Data Analysis</searchLink> – Name: Abstract Label: Description Group: Ab Data: As Vehicular Networks rely increasingly on sensed data to enhance functionality and safety, efficient and distributed data analysis is needed to effectively leverage new technologies in real-world applications. Considering the tens of GBs per hour sensed by modern connected vehicles, traditional analysis, based on global data accumulation, can rapidly exhaust the capacity of the underlying network, becoming increasingly costly, slow, or even infeasible. Employing the edge processing paradigm, which aims at alleviating this drawback by leveraging vehicles' computational power, we are the first to study how to localize, efficiently and distributively, relevant data in a vehicular fleet for analysis applications. This is achieved by appropriate methods to spread requests across the fleet, while efficiently balancing the time needed to identify relevant vehicles, and the computational overhead induced on the Vehicular Network. We evaluate our techniques using two large sets of real-world data in a realistic environment where vehicles join or leave the fleet during the distributed data localization process. As we show, our algorithms are both efficient and configurable, outperforming the baseline algorithms by up to a 40× speedup while reducing computational overhead by up to 3× , while providing good estimates for the fraction of vehicles with relevant data and fairly spreading the workload over the fleet. All code as well as detailed instructions are available at https://github.com/dcs-chalmers/dataloc_vn. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/526437" linkWindow="_blank">https://research.chalmers.se/publication/526437</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/526686" linkWindow="_blank">https://research.chalmers.se/publication/526686</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/526686/file/526686_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/526686/file/526686_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.f7c5f58e.e18a.4c57.a17c.c269a965e03a |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/ACCESS.2021.3118596 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 19 StartPage: 137714 Subjects: – SubjectFull: Connected vehicles Type: general – SubjectFull: Query processing Type: general – SubjectFull: Edge computing Type: general – SubjectFull: Data Analysis Type: general Titles: – TitleFull: Time- and Computation-Efficient Data Localization at Vehicular Networks' Edge Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Duvignau, Romaric – PersonEntity: Name: NameFull: Havers, Bastian – PersonEntity: Name: NameFull: Gulisano, Vincenzo Massimiliano – PersonEntity: Name: NameFull: Papatriantafilou, Marina IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2021 Identifiers: – Type: issn-print Value: 21693536 – Type: issn-print Value: 21693536 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 9 Titles: – TitleFull: AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman BADA - On-board Off-board Distributed Data Analytics IEEE Access Time- and Computation-Efficient Data Localization in Vehicular Networks’ Edge - Public code repository Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science