Time- and Computation-Efficient Data Localization at Vehicular Networks' Edge

Saved in:
Bibliographic Details
Title: Time- and Computation-Efficient Data Localization at Vehicular Networks' Edge
Authors: Duvignau, Romaric, 1989, Havers, Bastian, 1991, Gulisano, Vincenzo Massimiliano, 1984, Papatriantafilou, Marina, 1966
Source: AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman BADA - On-board Off-board Distributed Data Analytics IEEE Access Time- and Computation-Efficient Data Localization in Vehicular Networks’ Edge - Public code repository. 9:137714-137732
Subject Terms: Connected vehicles, Query processing, Edge computing, Data Analysis
Description: As Vehicular Networks rely increasingly on sensed data to enhance functionality and safety, efficient and distributed data analysis is needed to effectively leverage new technologies in real-world applications. Considering the tens of GBs per hour sensed by modern connected vehicles, traditional analysis, based on global data accumulation, can rapidly exhaust the capacity of the underlying network, becoming increasingly costly, slow, or even infeasible. Employing the edge processing paradigm, which aims at alleviating this drawback by leveraging vehicles' computational power, we are the first to study how to localize, efficiently and distributively, relevant data in a vehicular fleet for analysis applications. This is achieved by appropriate methods to spread requests across the fleet, while efficiently balancing the time needed to identify relevant vehicles, and the computational overhead induced on the Vehicular Network. We evaluate our techniques using two large sets of real-world data in a realistic environment where vehicles join or leave the fleet during the distributed data localization process. As we show, our algorithms are both efficient and configurable, outperforming the baseline algorithms by up to a 40× speedup while reducing computational overhead by up to 3× , while providing good estimates for the fraction of vehicles with relevant data and fairly spreading the workload over the fleet. All code as well as detailed instructions are available at https://github.com/dcs-chalmers/dataloc_vn.
File Description: electronic
Access URL: https://research.chalmers.se/publication/526437
https://research.chalmers.se/publication/526686
https://research.chalmers.se/publication/526686/file/526686_Fulltext.pdf
Database: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/526437#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=21693536&ISBN=&volume=9&issue=&date=20210101&spage=137714&pages=137714-137732&title=AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman BADA - On-board Off-board Distributed Data Analytics IEEE Access Time- and Computation-Efficient Data Localization in Vehicular Networks’ Edge - Public code repository&atitle=Time-%20and%20Computation-Efficient%20Data%20Localization%20at%20Vehicular%20Networks%27%20Edge&aulast=Duvignau%2C%20Romaric&id=DOI:10.1109/ACCESS.2021.3118596
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Duvignau%20R
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.f7c5f58e.e18a.4c57.a17c.c269a965e03a
RelevancyScore: 1004
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1004.00384521484
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Time- and Computation-Efficient Data Localization at Vehicular Networks' Edge
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Duvignau%2C+Romaric%22">Duvignau, Romaric</searchLink>, 1989<br /><searchLink fieldCode="AR" term="%22Havers%2C+Bastian%22">Havers, Bastian</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Gulisano%2C+Vincenzo+Massimiliano%22">Gulisano, Vincenzo Massimiliano</searchLink>, 1984<br /><searchLink fieldCode="AR" term="%22Papatriantafilou%2C+Marina%22">Papatriantafilou, Marina</searchLink>, 1966
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman BADA - On-board Off-board Distributed Data Analytics IEEE Access Time- and Computation-Efficient Data Localization in Vehicular Networks’ Edge - Public code repository</i>. 9:137714-137732
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Connected+vehicles%22">Connected vehicles</searchLink><br /><searchLink fieldCode="DE" term="%22Query+processing%22">Query processing</searchLink><br /><searchLink fieldCode="DE" term="%22Edge+computing%22">Edge computing</searchLink><br /><searchLink fieldCode="DE" term="%22Data+Analysis%22">Data Analysis</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: As Vehicular Networks rely increasingly on sensed data to enhance functionality and safety, efficient and distributed data analysis is needed to effectively leverage new technologies in real-world applications. Considering the tens of GBs per hour sensed by modern connected vehicles, traditional analysis, based on global data accumulation, can rapidly exhaust the capacity of the underlying network, becoming increasingly costly, slow, or even infeasible. Employing the edge processing paradigm, which aims at alleviating this drawback by leveraging vehicles' computational power, we are the first to study how to localize, efficiently and distributively, relevant data in a vehicular fleet for analysis applications. This is achieved by appropriate methods to spread requests across the fleet, while efficiently balancing the time needed to identify relevant vehicles, and the computational overhead induced on the Vehicular Network. We evaluate our techniques using two large sets of real-world data in a realistic environment where vehicles join or leave the fleet during the distributed data localization process. As we show, our algorithms are both efficient and configurable, outperforming the baseline algorithms by up to a 40× speedup while reducing computational overhead by up to 3× , while providing good estimates for the fraction of vehicles with relevant data and fairly spreading the workload over the fleet. All code as well as detailed instructions are available at https://github.com/dcs-chalmers/dataloc_vn.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/526437" linkWindow="_blank">https://research.chalmers.se/publication/526437</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/526686" linkWindow="_blank">https://research.chalmers.se/publication/526686</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/526686/file/526686_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/526686/file/526686_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.f7c5f58e.e18a.4c57.a17c.c269a965e03a
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/ACCESS.2021.3118596
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 19
        StartPage: 137714
    Subjects:
      – SubjectFull: Connected vehicles
        Type: general
      – SubjectFull: Query processing
        Type: general
      – SubjectFull: Edge computing
        Type: general
      – SubjectFull: Data Analysis
        Type: general
    Titles:
      – TitleFull: Time- and Computation-Efficient Data Localization at Vehicular Networks' Edge
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Duvignau, Romaric
      – PersonEntity:
          Name:
            NameFull: Havers, Bastian
      – PersonEntity:
          Name:
            NameFull: Gulisano, Vincenzo Massimiliano
      – PersonEntity:
          Name:
            NameFull: Papatriantafilou, Marina
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2021
          Identifiers:
            – Type: issn-print
              Value: 21693536
            – Type: issn-print
              Value: 21693536
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 9
          Titles:
            – TitleFull: AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman BADA - On-board Off-board Distributed Data Analytics IEEE Access Time- and Computation-Efficient Data Localization in Vehicular Networks’ Edge - Public code repository
              Type: main
ResultId 1