DRIVEN: A framework for efficient Data Retrieval and clustering in Vehicular Networks

Uložené v:
Podrobná bibliografia
Názov: DRIVEN: A framework for efficient Data Retrieval and clustering in Vehicular Networks
Autori: Havers, Bastian, 1991, Duvignau, Romaric, 1989, Najdataei, Hannaneh, 1988, Gulisano, Vincenzo Massimiliano, 1984, Papatriantafilou, Marina, 1966, Koppisetty, Ashok Chaitanya
Zdroj: AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman Future Generation Computer Systems. 107:1-17
Predmety: Streaming data, Clustering, Compression, Edge computing, Fog computing
Popis: The growing interest in data analysis applications for Cyber–Physical Systems stems from the large amounts of data such large distributed systems sense in a continuous fashion. A key research question in this context is how to jointly address the efficiency and effectiveness challenges of such data analysis applications. DRIVEN proposes a way to jointly address these challenges for a data gathering and distance-based clustering tool in the context of vehicular networks. To cope with the limited communication bandwidth (compared to the sensed data volume) of vehicular networks and data transmission's monetary costs, DRIVEN avoids gathering raw data from vehicles, but rather relies on a streaming-based and error-bounded approximation, through Piecewise Linear Approximation (PLA), to compress the volumes of gathered data. Moreover, a streaming-based approach is also used to cluster the collected data (once the latter is reconstructed from its PLA-approximated form). DRIVEN's clustering algorithm leverages the inherent ordering of the spatial and temporal data being collected to perform clustering in an online fashion, while data is being retrieved. As we show, based on our prototype implementation using Apache Flink and thorough evaluation with real-world data such as GPS, LiDAR and other vehicular signals, the accuracy loss for the clustering performed on the gathered approximated data can be small (below 10%), even when the raw data is compressed to 5-35% of its original size, and the transferring of historical data itself can be completed in up to one-tenth of the duration observed when gathering raw data.
Popis súboru: electronic
Prístupová URL adresa: https://research.chalmers.se/publication/515315
https://research.chalmers.se/publication/515427
https://research.chalmers.se/publication/515427/file/515427_Fulltext.pdf
Databáza: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/515315#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=0167739X&ISBN=&volume=107&issue=&date=20200101&spage=1&pages=1-17&title=AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman Future Generation Computer Systems&atitle=DRIVEN%3A%20A%20framework%20for%20efficient%20Data%20Retrieval%20and%20clustering%20in%20Vehicular%20Networks&aulast=Havers%2C%20Bastian&id=DOI:10.1016/j.future.2020.01.050
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Havers%20B
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.e6df338a.0027.40ae.851c.67b7c7ca5026
RelevancyScore: 987
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 987.1474609375
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: DRIVEN: A framework for efficient Data Retrieval and clustering in Vehicular Networks
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Havers%2C+Bastian%22">Havers, Bastian</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Duvignau%2C+Romaric%22">Duvignau, Romaric</searchLink>, 1989<br /><searchLink fieldCode="AR" term="%22Najdataei%2C+Hannaneh%22">Najdataei, Hannaneh</searchLink>, 1988<br /><searchLink fieldCode="AR" term="%22Gulisano%2C+Vincenzo+Massimiliano%22">Gulisano, Vincenzo Massimiliano</searchLink>, 1984<br /><searchLink fieldCode="AR" term="%22Papatriantafilou%2C+Marina%22">Papatriantafilou, Marina</searchLink>, 1966<br /><searchLink fieldCode="AR" term="%22Koppisetty%2C+Ashok+Chaitanya%22">Koppisetty, Ashok Chaitanya</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman Future Generation Computer Systems</i>. 107:1-17
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Streaming+data%22">Streaming data</searchLink><br /><searchLink fieldCode="DE" term="%22Clustering%22">Clustering</searchLink><br /><searchLink fieldCode="DE" term="%22Compression%22">Compression</searchLink><br /><searchLink fieldCode="DE" term="%22Edge+computing%22">Edge computing</searchLink><br /><searchLink fieldCode="DE" term="%22Fog+computing%22">Fog computing</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The growing interest in data analysis applications for Cyber–Physical Systems stems from the large amounts of data such large distributed systems sense in a continuous fashion. A key research question in this context is how to jointly address the efficiency and effectiveness challenges of such data analysis applications. DRIVEN proposes a way to jointly address these challenges for a data gathering and distance-based clustering tool in the context of vehicular networks. To cope with the limited communication bandwidth (compared to the sensed data volume) of vehicular networks and data transmission's monetary costs, DRIVEN avoids gathering raw data from vehicles, but rather relies on a streaming-based and error-bounded approximation, through Piecewise Linear Approximation (PLA), to compress the volumes of gathered data. Moreover, a streaming-based approach is also used to cluster the collected data (once the latter is reconstructed from its PLA-approximated form). DRIVEN's clustering algorithm leverages the inherent ordering of the spatial and temporal data being collected to perform clustering in an online fashion, while data is being retrieved. As we show, based on our prototype implementation using Apache Flink and thorough evaluation with real-world data such as GPS, LiDAR and other vehicular signals, the accuracy loss for the clustering performed on the gathered approximated data can be small (below 10%), even when the raw data is compressed to 5-35% of its original size, and the transferring of historical data itself can be completed in up to one-tenth of the duration observed when gathering raw data.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/515315" linkWindow="_blank">https://research.chalmers.se/publication/515315</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/515427" linkWindow="_blank">https://research.chalmers.se/publication/515427</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/515427/file/515427_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/515427/file/515427_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.e6df338a.0027.40ae.851c.67b7c7ca5026
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.future.2020.01.050
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 17
        StartPage: 1
    Subjects:
      – SubjectFull: Streaming data
        Type: general
      – SubjectFull: Clustering
        Type: general
      – SubjectFull: Compression
        Type: general
      – SubjectFull: Edge computing
        Type: general
      – SubjectFull: Fog computing
        Type: general
    Titles:
      – TitleFull: DRIVEN: A framework for efficient Data Retrieval and clustering in Vehicular Networks
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Havers, Bastian
      – PersonEntity:
          Name:
            NameFull: Duvignau, Romaric
      – PersonEntity:
          Name:
            NameFull: Najdataei, Hannaneh
      – PersonEntity:
          Name:
            NameFull: Gulisano, Vincenzo Massimiliano
      – PersonEntity:
          Name:
            NameFull: Papatriantafilou, Marina
      – PersonEntity:
          Name:
            NameFull: Koppisetty, Ashok Chaitanya
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2020
          Identifiers:
            – Type: issn-print
              Value: 0167739X
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 107
          Titles:
            – TitleFull: AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Molnbaserade produkter och produktion (FiC) HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman Future Generation Computer Systems
              Type: main
ResultId 1