Data-driven algorithm for throughput bottleneck analysis of production systems
Uloženo v:
| Název: | Data-driven algorithm for throughput bottleneck analysis of production systems |
|---|---|
| Autoři: | Subramaniyan, Mukund, 1989, Skoogh, Anders, 1980, Salomonsson, Hans, 1985, Bangalore, Pramod, 1983, Gopalakrishnan, Maheshwaran, 1987, Sheikh, Muhammad Azam, 1979 |
| Zdroj: | DAIMP - Dataanalys inom underhållsplanering Production and Manufacturing Research. 6(1):225-246 |
| Témata: | productivity, statistical approach, Bottleneck, Smart Maintenance, Data-driven, Smart manufacturing, Maintenance, data science, Manufacturing Execution System, production, bottlenecks, big data, Production system, Analytics, machine learning, active period, manufacturing, maintenance, Throughput, MES, industry 4.0, Throughput bottleneck detection |
| Popis: | The digital transformation of manufacturing industries is expected to yield increased productivity. Companies collect large volumes of real-time machine data and are seeking new ways to use it in furthering data-driven decision making. A challenge for these companies is identifying throughput bottlenecks using the real-time machine data they collect. This paper proposes a data-driven algorithm to better identify bottleneck groups and provide diagnostic insights. The algorithm is based on the active period theory of throughput bottleneck analysis. It integrates available manufacturing execution systems (MES) data from the machines and tests the statistical significance of any bottlenecks detected. The algorithm can be automated to allow data-driven decision making on the shop floor, thus improving throughput. Real-world MES datasets were used to develop and test the algorithm, producing research outcomes useful to manufacturing industries. This research pushes standards in throughput bottleneck analysis, using an interdisciplinary approach based on production and data sciences. |
| Popis souboru: | electronic |
| Přístupová URL adresa: | https://research.chalmers.se/publication/504561 https://research.chalmers.se/publication/504761 https://research.chalmers.se/publication/504761/file/504761_Fulltext.pdf |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/504561# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Subramaniyan%20M Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.e3c40b13.db6b.4e15.969c.b6c817762715 RelevancyScore: 959 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 959.340270996094 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Data-driven algorithm for throughput bottleneck analysis of production systems – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Subramaniyan%2C+Mukund%22">Subramaniyan, Mukund</searchLink>, 1989<br /><searchLink fieldCode="AR" term="%22Skoogh%2C+Anders%22">Skoogh, Anders</searchLink>, 1980<br /><searchLink fieldCode="AR" term="%22Salomonsson%2C+Hans%22">Salomonsson, Hans</searchLink>, 1985<br /><searchLink fieldCode="AR" term="%22Bangalore%2C+Pramod%22">Bangalore, Pramod</searchLink>, 1983<br /><searchLink fieldCode="AR" term="%22Gopalakrishnan%2C+Maheshwaran%22">Gopalakrishnan, Maheshwaran</searchLink>, 1987<br /><searchLink fieldCode="AR" term="%22Sheikh%2C+Muhammad+Azam%22">Sheikh, Muhammad Azam</searchLink>, 1979 – Name: TitleSource Label: Source Group: Src Data: <i>DAIMP - Dataanalys inom underhållsplanering Production and Manufacturing Research</i>. 6(1):225-246 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22productivity%22">productivity</searchLink><br /><searchLink fieldCode="DE" term="%22statistical+approach%22">statistical approach</searchLink><br /><searchLink fieldCode="DE" term="%22Bottleneck%22">Bottleneck</searchLink><br /><searchLink fieldCode="DE" term="%22Smart+Maintenance%22">Smart Maintenance</searchLink><br /><searchLink fieldCode="DE" term="%22Data-driven%22">Data-driven</searchLink><br /><searchLink fieldCode="DE" term="%22Smart+manufacturing%22">Smart manufacturing</searchLink><br /><searchLink fieldCode="DE" term="%22Maintenance%22">Maintenance</searchLink><br /><searchLink fieldCode="DE" term="%22data+science%22">data science</searchLink><br /><searchLink fieldCode="DE" term="%22Manufacturing+Execution+System%22">Manufacturing Execution System</searchLink><br /><searchLink fieldCode="DE" term="%22production%22">production</searchLink><br /><searchLink fieldCode="DE" term="%22bottlenecks%22">bottlenecks</searchLink><br /><searchLink fieldCode="DE" term="%22big+data%22">big data</searchLink><br /><searchLink fieldCode="DE" term="%22Production+system%22">Production system</searchLink><br /><searchLink fieldCode="DE" term="%22Analytics%22">Analytics</searchLink><br /><searchLink fieldCode="DE" term="%22machine+learning%22">machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22active+period%22">active period</searchLink><br /><searchLink fieldCode="DE" term="%22manufacturing%22">manufacturing</searchLink><br /><searchLink fieldCode="DE" term="%22maintenance%22">maintenance</searchLink><br /><searchLink fieldCode="DE" term="%22Throughput%22">Throughput</searchLink><br /><searchLink fieldCode="DE" term="%22MES%22">MES</searchLink><br /><searchLink fieldCode="DE" term="%22industry+4%2E0%22">industry 4.0</searchLink><br /><searchLink fieldCode="DE" term="%22Throughput+bottleneck+detection%22">Throughput bottleneck detection</searchLink> – Name: Abstract Label: Description Group: Ab Data: The digital transformation of manufacturing industries is expected to yield increased productivity. Companies collect large volumes of real-time machine data and are seeking new ways to use it in furthering data-driven decision making. A challenge for these companies is identifying throughput bottlenecks using the real-time machine data they collect. This paper proposes a data-driven algorithm to better identify bottleneck groups and provide diagnostic insights. The algorithm is based on the active period theory of throughput bottleneck analysis. It integrates available manufacturing execution systems (MES) data from the machines and tests the statistical significance of any bottlenecks detected. The algorithm can be automated to allow data-driven decision making on the shop floor, thus improving throughput. Real-world MES datasets were used to develop and test the algorithm, producing research outcomes useful to manufacturing industries. This research pushes standards in throughput bottleneck analysis, using an interdisciplinary approach based on production and data sciences. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/504561" linkWindow="_blank">https://research.chalmers.se/publication/504561</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/504761" linkWindow="_blank">https://research.chalmers.se/publication/504761</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/504761/file/504761_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/504761/file/504761_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.e3c40b13.db6b.4e15.969c.b6c817762715 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1080/21693277.2018.1496491 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 22 StartPage: 225 Subjects: – SubjectFull: productivity Type: general – SubjectFull: statistical approach Type: general – SubjectFull: Bottleneck Type: general – SubjectFull: Smart Maintenance Type: general – SubjectFull: Data-driven Type: general – SubjectFull: Smart manufacturing Type: general – SubjectFull: Maintenance Type: general – SubjectFull: data science Type: general – SubjectFull: Manufacturing Execution System Type: general – SubjectFull: production Type: general – SubjectFull: bottlenecks Type: general – SubjectFull: big data Type: general – SubjectFull: Production system Type: general – SubjectFull: Analytics Type: general – SubjectFull: machine learning Type: general – SubjectFull: active period Type: general – SubjectFull: manufacturing Type: general – SubjectFull: maintenance Type: general – SubjectFull: Throughput Type: general – SubjectFull: MES Type: general – SubjectFull: industry 4.0 Type: general – SubjectFull: Throughput bottleneck detection Type: general Titles: – TitleFull: Data-driven algorithm for throughput bottleneck analysis of production systems Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Subramaniyan, Mukund – PersonEntity: Name: NameFull: Skoogh, Anders – PersonEntity: Name: NameFull: Salomonsson, Hans – PersonEntity: Name: NameFull: Bangalore, Pramod – PersonEntity: Name: NameFull: Gopalakrishnan, Maheshwaran – PersonEntity: Name: NameFull: Sheikh, Muhammad Azam IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2018 Identifiers: – Type: issn-print Value: 21693277 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 6 – Type: issue Value: 1 Titles: – TitleFull: DAIMP - Dataanalys inom underhållsplanering Production and Manufacturing Research Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science