Adaptive tuning of fractional order PID controllers for nonlinear processes using hybrid PSO DQN reinforcement learning
Saved in:
| Title: | Adaptive tuning of fractional order PID controllers for nonlinear processes using hybrid PSO DQN reinforcement learning |
|---|---|
| Authors: | Shahouni, Reza, Bahraini, Masoud, 1991, Abrofarakh, Moslem, Abbasi, Mohsen |
| Source: | Scientific Reports. 15(1) |
| Subject Terms: | PID controller tuning, GA, Deep Q-Network, ANN, Non-Linear FOPID, PSO-RL |
| Description: | This study presents an innovative adaptive non-linear fractional-order PID (FOPID) tuning methodology for a flow meter controller in a desalination plant, integrating a hybrid Particle Swarm Optimization (PSO) and Deep Q-Network (DQN)-based Reinforcement Learning (RL) strategy with a dynamic weighting mechanism to optimize control of non-linear systems with time delays and disturbances. By utilizing fractional-order parameters, the PSO-DQN-RL framework ensures global optimization and real-time adaptability under fluctuations in operational parameters. Results demonstrate superior performance over traditional methods and advanced techniques such as Genetic Algorithms (GA), Fuzzy Logic Controller (FLC), Neural Network-based PID (NN-PID), and PSO, offering faster response times, reduced overshoot, and minimal steady-state error compared to the slower and less precise outcomes of FLC, the static limitations of PSO, the rigid parameter settings of GA, and the inconsistent performance of NN. The hybrid method's enhanced robustness and dynamic parameter evolution surpass the modest adaptability of PSO. Despite its computational complexity, the offline-online balance and real-time GUI enable scalable deployment, positioning this scientifically novel approach as a benchmark for FOPID tuning in various applications. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/549086 https://research.chalmers.se/publication/549086/file/549086_Fulltext.pdf |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/549086# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=2045-2322[TA]+AND+[PG]+AND+2025[PDAT] Name: FREE - PubMed Central (ISSN based link) Category: fullText Text: Full Text Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif MouseOverText: Check this PubMed for the article full text. – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=20452322&ISBN=&volume=15&issue=1&date=20250101&spage=&pages=&title=Scientific Reports&atitle=Adaptive%20tuning%20of%20fractional%20order%20PID%20controllers%20for%20nonlinear%20processes%20using%20hybrid%20PSO%20DQN%20reinforcement%20learning&aulast=Shahouni%2C%20Reza&id=DOI:10.1038/s41598-025-22509-x Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Shahouni%20R Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.de9e2421.18d8.4d73.8a14.02c3a36a51b8 RelevancyScore: 1065 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1064.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Adaptive tuning of fractional order PID controllers for nonlinear processes using hybrid PSO DQN reinforcement learning – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Shahouni%2C+Reza%22">Shahouni, Reza</searchLink><br /><searchLink fieldCode="AR" term="%22Bahraini%2C+Masoud%22">Bahraini, Masoud</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Abrofarakh%2C+Moslem%22">Abrofarakh, Moslem</searchLink><br /><searchLink fieldCode="AR" term="%22Abbasi%2C+Mohsen%22">Abbasi, Mohsen</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>Scientific Reports</i>. 15(1) – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22PID+controller+tuning%22">PID controller tuning</searchLink><br /><searchLink fieldCode="DE" term="%22GA%22">GA</searchLink><br /><searchLink fieldCode="DE" term="%22Deep+Q-Network%22">Deep Q-Network</searchLink><br /><searchLink fieldCode="DE" term="%22ANN%22">ANN</searchLink><br /><searchLink fieldCode="DE" term="%22Non-Linear+FOPID%22">Non-Linear FOPID</searchLink><br /><searchLink fieldCode="DE" term="%22PSO-RL%22">PSO-RL</searchLink> – Name: Abstract Label: Description Group: Ab Data: This study presents an innovative adaptive non-linear fractional-order PID (FOPID) tuning methodology for a flow meter controller in a desalination plant, integrating a hybrid Particle Swarm Optimization (PSO) and Deep Q-Network (DQN)-based Reinforcement Learning (RL) strategy with a dynamic weighting mechanism to optimize control of non-linear systems with time delays and disturbances. By utilizing fractional-order parameters, the PSO-DQN-RL framework ensures global optimization and real-time adaptability under fluctuations in operational parameters. Results demonstrate superior performance over traditional methods and advanced techniques such as Genetic Algorithms (GA), Fuzzy Logic Controller (FLC), Neural Network-based PID (NN-PID), and PSO, offering faster response times, reduced overshoot, and minimal steady-state error compared to the slower and less precise outcomes of FLC, the static limitations of PSO, the rigid parameter settings of GA, and the inconsistent performance of NN. The hybrid method's enhanced robustness and dynamic parameter evolution surpass the modest adaptability of PSO. Despite its computational complexity, the offline-online balance and real-time GUI enable scalable deployment, positioning this scientifically novel approach as a benchmark for FOPID tuning in various applications. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/549086" linkWindow="_blank">https://research.chalmers.se/publication/549086</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/549086/file/549086_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/549086/file/549086_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.de9e2421.18d8.4d73.8a14.02c3a36a51b8 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1038/s41598-025-22509-x Languages: – Text: English Subjects: – SubjectFull: PID controller tuning Type: general – SubjectFull: GA Type: general – SubjectFull: Deep Q-Network Type: general – SubjectFull: ANN Type: general – SubjectFull: Non-Linear FOPID Type: general – SubjectFull: PSO-RL Type: general Titles: – TitleFull: Adaptive tuning of fractional order PID controllers for nonlinear processes using hybrid PSO DQN reinforcement learning Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Shahouni, Reza – PersonEntity: Name: NameFull: Bahraini, Masoud – PersonEntity: Name: NameFull: Abrofarakh, Moslem – PersonEntity: Name: NameFull: Abbasi, Mohsen IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 20452322 – Type: issn-print Value: 20452322 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 15 – Type: issue Value: 1 Titles: – TitleFull: Scientific Reports Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science