Adaptive tuning of fractional order PID controllers for nonlinear processes using hybrid PSO DQN reinforcement learning

Saved in:
Bibliographic Details
Title: Adaptive tuning of fractional order PID controllers for nonlinear processes using hybrid PSO DQN reinforcement learning
Authors: Shahouni, Reza, Bahraini, Masoud, 1991, Abrofarakh, Moslem, Abbasi, Mohsen
Source: Scientific Reports. 15(1)
Subject Terms: PID controller tuning, GA, Deep Q-Network, ANN, Non-Linear FOPID, PSO-RL
Description: This study presents an innovative adaptive non-linear fractional-order PID (FOPID) tuning methodology for a flow meter controller in a desalination plant, integrating a hybrid Particle Swarm Optimization (PSO) and Deep Q-Network (DQN)-based Reinforcement Learning (RL) strategy with a dynamic weighting mechanism to optimize control of non-linear systems with time delays and disturbances. By utilizing fractional-order parameters, the PSO-DQN-RL framework ensures global optimization and real-time adaptability under fluctuations in operational parameters. Results demonstrate superior performance over traditional methods and advanced techniques such as Genetic Algorithms (GA), Fuzzy Logic Controller (FLC), Neural Network-based PID (NN-PID), and PSO, offering faster response times, reduced overshoot, and minimal steady-state error compared to the slower and less precise outcomes of FLC, the static limitations of PSO, the rigid parameter settings of GA, and the inconsistent performance of NN. The hybrid method's enhanced robustness and dynamic parameter evolution surpass the modest adaptability of PSO. Despite its computational complexity, the offline-online balance and real-time GUI enable scalable deployment, positioning this scientifically novel approach as a benchmark for FOPID tuning in various applications.
File Description: electronic
Access URL: https://research.chalmers.se/publication/549086
https://research.chalmers.se/publication/549086/file/549086_Fulltext.pdf
Database: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/549086#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=2045-2322[TA]+AND+[PG]+AND+2025[PDAT]
    Name: FREE - PubMed Central (ISSN based link)
    Category: fullText
    Text: Full Text
    Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif
    MouseOverText: Check this PubMed for the article full text.
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=20452322&ISBN=&volume=15&issue=1&date=20250101&spage=&pages=&title=Scientific Reports&atitle=Adaptive%20tuning%20of%20fractional%20order%20PID%20controllers%20for%20nonlinear%20processes%20using%20hybrid%20PSO%20DQN%20reinforcement%20learning&aulast=Shahouni%2C%20Reza&id=DOI:10.1038/s41598-025-22509-x
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Shahouni%20R
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.de9e2421.18d8.4d73.8a14.02c3a36a51b8
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Adaptive tuning of fractional order PID controllers for nonlinear processes using hybrid PSO DQN reinforcement learning
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Shahouni%2C+Reza%22">Shahouni, Reza</searchLink><br /><searchLink fieldCode="AR" term="%22Bahraini%2C+Masoud%22">Bahraini, Masoud</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Abrofarakh%2C+Moslem%22">Abrofarakh, Moslem</searchLink><br /><searchLink fieldCode="AR" term="%22Abbasi%2C+Mohsen%22">Abbasi, Mohsen</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Scientific Reports</i>. 15(1)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22PID+controller+tuning%22">PID controller tuning</searchLink><br /><searchLink fieldCode="DE" term="%22GA%22">GA</searchLink><br /><searchLink fieldCode="DE" term="%22Deep+Q-Network%22">Deep Q-Network</searchLink><br /><searchLink fieldCode="DE" term="%22ANN%22">ANN</searchLink><br /><searchLink fieldCode="DE" term="%22Non-Linear+FOPID%22">Non-Linear FOPID</searchLink><br /><searchLink fieldCode="DE" term="%22PSO-RL%22">PSO-RL</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This study presents an innovative adaptive non-linear fractional-order PID (FOPID) tuning methodology for a flow meter controller in a desalination plant, integrating a hybrid Particle Swarm Optimization (PSO) and Deep Q-Network (DQN)-based Reinforcement Learning (RL) strategy with a dynamic weighting mechanism to optimize control of non-linear systems with time delays and disturbances. By utilizing fractional-order parameters, the PSO-DQN-RL framework ensures global optimization and real-time adaptability under fluctuations in operational parameters. Results demonstrate superior performance over traditional methods and advanced techniques such as Genetic Algorithms (GA), Fuzzy Logic Controller (FLC), Neural Network-based PID (NN-PID), and PSO, offering faster response times, reduced overshoot, and minimal steady-state error compared to the slower and less precise outcomes of FLC, the static limitations of PSO, the rigid parameter settings of GA, and the inconsistent performance of NN. The hybrid method's enhanced robustness and dynamic parameter evolution surpass the modest adaptability of PSO. Despite its computational complexity, the offline-online balance and real-time GUI enable scalable deployment, positioning this scientifically novel approach as a benchmark for FOPID tuning in various applications.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/549086" linkWindow="_blank">https://research.chalmers.se/publication/549086</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/549086/file/549086_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/549086/file/549086_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.de9e2421.18d8.4d73.8a14.02c3a36a51b8
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1038/s41598-025-22509-x
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: PID controller tuning
        Type: general
      – SubjectFull: GA
        Type: general
      – SubjectFull: Deep Q-Network
        Type: general
      – SubjectFull: ANN
        Type: general
      – SubjectFull: Non-Linear FOPID
        Type: general
      – SubjectFull: PSO-RL
        Type: general
    Titles:
      – TitleFull: Adaptive tuning of fractional order PID controllers for nonlinear processes using hybrid PSO DQN reinforcement learning
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Shahouni, Reza
      – PersonEntity:
          Name:
            NameFull: Bahraini, Masoud
      – PersonEntity:
          Name:
            NameFull: Abrofarakh, Moslem
      – PersonEntity:
          Name:
            NameFull: Abbasi, Mohsen
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 20452322
            – Type: issn-print
              Value: 20452322
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 15
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: Scientific Reports
              Type: main
ResultId 1