Adaptive vibration attenuation with globally convergent parameter estimation
Saved in:
| Title: | Adaptive vibration attenuation with globally convergent parameter estimation |
|---|---|
| Authors: | Abdollahpouri, Mohammad, 1985, Batista, Gabriel, Takacs, Gergely, Johansen, Tor Arne, Rohal'-Ilkiv, Boris |
| Source: | Mechanical Systems and Signal Processing. 114:512-527 |
| Subject Terms: | Adaptive vibration attenuation, Joint state and parameter estimation problem, Globally convergent Kalman filtering, Real-time embedded implementation |
| Description: | Parameter estimation problems can be nonlinear, even if the dynamics are expressed by a linear model. The extended Kalman filter (EKF), even though it is one of the most popular nonlinear estimation techniques, may not converge without sufficient a priori information. This paper utilizes a globally convergent nonlinear estimation method the double Kalman filter (DKF) for a vibrating cantilever beam. A globally valid linear time-varying (LTV) model is required by the first stage of the DKF depending on some conditions on input and output excitation. Without considering noise, this LW model provides the first stage and is globally equivalent to the nonlinear system. Since the neglected input and output noises can degrade the quality of estimation, the second stage linearizes the nonlinear dynamics, utilizing the nominally globally convergent estimate of the first stage, and improves the quality of estimation. Both estimation methods were applied to a cantilever beam setup in real-time. An adaptive linear quadratic regulator utilizes the estimated parameters to attenuate unknown transient disturbances. Different scenarios have been explored, providing a fair comparison between EKF and DKF. These methods have been implemented on an embedded ARM-based microcontroller unit and illustrates improved convergent properties of the DKF over the EKF. The global stability of the DKF is verified and it has been observed that it needs twice the computational cost of the EKF. |
| Access URL: | https://research.chalmers.se/publication/506269 |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=08883270&ISBN=&volume=114&issue=&date=20190101&spage=512&pages=512-527&title=Mechanical Systems and Signal Processing&atitle=Adaptive%20vibration%20attenuation%20with%20globally%20convergent%20parameter%20estimation&aulast=Abdollahpouri%2C%20Mohammad&id=DOI:10.1016/j.ymssp.2018.05.034 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Abdollahpouri%20M Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.d6c3cc98.5c8c.4e4e.b2e0.c4c284633676 RelevancyScore: 872 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 872.259582519531 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Adaptive vibration attenuation with globally convergent parameter estimation – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Abdollahpouri%2C+Mohammad%22">Abdollahpouri, Mohammad</searchLink>, 1985<br /><searchLink fieldCode="AR" term="%22Batista%2C+Gabriel%22">Batista, Gabriel</searchLink><br /><searchLink fieldCode="AR" term="%22Takacs%2C+Gergely%22">Takacs, Gergely</searchLink><br /><searchLink fieldCode="AR" term="%22Johansen%2C+Tor+Arne%22">Johansen, Tor Arne</searchLink><br /><searchLink fieldCode="AR" term="%22Rohal'-Ilkiv%2C+Boris%22">Rohal'-Ilkiv, Boris</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>Mechanical Systems and Signal Processing</i>. 114:512-527 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Adaptive+vibration+attenuation%22">Adaptive vibration attenuation</searchLink><br /><searchLink fieldCode="DE" term="%22Joint+state+and+parameter+estimation+problem%22">Joint state and parameter estimation problem</searchLink><br /><searchLink fieldCode="DE" term="%22Globally+convergent+Kalman+filtering%22">Globally convergent Kalman filtering</searchLink><br /><searchLink fieldCode="DE" term="%22Real-time+embedded+implementation%22">Real-time embedded implementation</searchLink> – Name: Abstract Label: Description Group: Ab Data: Parameter estimation problems can be nonlinear, even if the dynamics are expressed by a linear model. The extended Kalman filter (EKF), even though it is one of the most popular nonlinear estimation techniques, may not converge without sufficient a priori information. This paper utilizes a globally convergent nonlinear estimation method the double Kalman filter (DKF) for a vibrating cantilever beam. A globally valid linear time-varying (LTV) model is required by the first stage of the DKF depending on some conditions on input and output excitation. Without considering noise, this LW model provides the first stage and is globally equivalent to the nonlinear system. Since the neglected input and output noises can degrade the quality of estimation, the second stage linearizes the nonlinear dynamics, utilizing the nominally globally convergent estimate of the first stage, and improves the quality of estimation. Both estimation methods were applied to a cantilever beam setup in real-time. An adaptive linear quadratic regulator utilizes the estimated parameters to attenuate unknown transient disturbances. Different scenarios have been explored, providing a fair comparison between EKF and DKF. These methods have been implemented on an embedded ARM-based microcontroller unit and illustrates improved convergent properties of the DKF over the EKF. The global stability of the DKF is verified and it has been observed that it needs twice the computational cost of the EKF. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/506269" linkWindow="_blank">https://research.chalmers.se/publication/506269</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.d6c3cc98.5c8c.4e4e.b2e0.c4c284633676 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1016/j.ymssp.2018.05.034 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 16 StartPage: 512 Subjects: – SubjectFull: Adaptive vibration attenuation Type: general – SubjectFull: Joint state and parameter estimation problem Type: general – SubjectFull: Globally convergent Kalman filtering Type: general – SubjectFull: Real-time embedded implementation Type: general Titles: – TitleFull: Adaptive vibration attenuation with globally convergent parameter estimation Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Abdollahpouri, Mohammad – PersonEntity: Name: NameFull: Batista, Gabriel – PersonEntity: Name: NameFull: Takacs, Gergely – PersonEntity: Name: NameFull: Johansen, Tor Arne – PersonEntity: Name: NameFull: Rohal'-Ilkiv, Boris IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2019 Identifiers: – Type: issn-print Value: 08883270 – Type: issn-print Value: 10961216 – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 114 Titles: – TitleFull: Mechanical Systems and Signal Processing Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science