Parameterized mixed graph coloring
Saved in:
| Title: | Parameterized mixed graph coloring |
|---|---|
| Authors: | Damaschke, Peter, 1963 |
| Source: | Journal of Combinatorial Optimization. 38(2):362-374 |
| Subject Terms: | longest path, parameterized algorithm, graph coloring, scheduling, mixed graph |
| Description: | Coloring of mixed graphs that contain both directed arcs and undirected edges is relevant for scheduling of unit-length jobs with precedence constraints and conflicts. The classic GHRV theorem (attributed to Gallai, Hasse, Roy, and Vitaver) relates graph coloring to longest paths. It can be extended to mixed graphs. In the present paper we further extend the GHRV theorem to weighted mixed graphs. As a byproduct this yields a kernel and a parameterized algorithm (with the number of undirected edges as parameter) that is slightly faster than the brute-force algorithm. The parameter is natural since the directed version is polynomial whereas the undirected version is NP-complete. Furthermore we point out a new polynomial case where the edges form a clique. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/511193 https://research.chalmers.se/publication/508680 https://research.chalmers.se/publication/511193/file/511193_Fulltext.pdf |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/511193# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=15732886&ISBN=&volume=38&issue=2&date=20190101&spage=362&pages=362-374&title=Journal of Combinatorial Optimization&atitle=Parameterized%20mixed%20graph%20coloring&aulast=Damaschke%2C%20Peter&id=DOI:10.1007/s10878-019-00388-z Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Damaschke%20P Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.c6446e3c.09c4.440a.8f05.b1c8fc8c28ff RelevancyScore: 972 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 972.259582519531 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Parameterized mixed graph coloring – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Damaschke%2C+Peter%22">Damaschke, Peter</searchLink>, 1963 – Name: TitleSource Label: Source Group: Src Data: <i>Journal of Combinatorial Optimization</i>. 38(2):362-374 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22longest+path%22">longest path</searchLink><br /><searchLink fieldCode="DE" term="%22parameterized+algorithm%22">parameterized algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22graph+coloring%22">graph coloring</searchLink><br /><searchLink fieldCode="DE" term="%22scheduling%22">scheduling</searchLink><br /><searchLink fieldCode="DE" term="%22mixed+graph%22">mixed graph</searchLink> – Name: Abstract Label: Description Group: Ab Data: Coloring of mixed graphs that contain both directed arcs and undirected edges is relevant for scheduling of unit-length jobs with precedence constraints and conflicts. The classic GHRV theorem (attributed to Gallai, Hasse, Roy, and Vitaver) relates graph coloring to longest paths. It can be extended to mixed graphs. In the present paper we further extend the GHRV theorem to weighted mixed graphs. As a byproduct this yields a kernel and a parameterized algorithm (with the number of undirected edges as parameter) that is slightly faster than the brute-force algorithm. The parameter is natural since the directed version is polynomial whereas the undirected version is NP-complete. Furthermore we point out a new polynomial case where the edges form a clique. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/511193" linkWindow="_blank">https://research.chalmers.se/publication/511193</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/508680" linkWindow="_blank">https://research.chalmers.se/publication/508680</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/511193/file/511193_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/511193/file/511193_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.c6446e3c.09c4.440a.8f05.b1c8fc8c28ff |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1007/s10878-019-00388-z Languages: – Text: English PhysicalDescription: Pagination: PageCount: 13 StartPage: 362 Subjects: – SubjectFull: longest path Type: general – SubjectFull: parameterized algorithm Type: general – SubjectFull: graph coloring Type: general – SubjectFull: scheduling Type: general – SubjectFull: mixed graph Type: general Titles: – TitleFull: Parameterized mixed graph coloring Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Damaschke, Peter IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2019 Identifiers: – Type: issn-print Value: 15732886 – Type: issn-print Value: 13826905 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 38 – Type: issue Value: 2 Titles: – TitleFull: Journal of Combinatorial Optimization Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science