Model-Based End-to-End Learning for Multi-Target Integrated Sensing and Communication under Hardware Impairments
Saved in:
| Title: | Model-Based End-to-End Learning for Multi-Target Integrated Sensing and Communication under Hardware Impairments |
|---|---|
| Authors: | Mateos Ramos, José Miguel, 1998, Häger, Christian, 1986, Keskin, Musa Furkan, 1988, Le Magoarou, Luc, Wymeersch, Henk, 1976 |
| Source: | SAICOM Hårdvarumedveten integrerad lokalisering och avkänning för kommunikationssystem A holistic flagship towards the 6G network platform and system, to inspire digital transformation, for the world to act together in meeting needs in society and ecosystems with novel 6G services Fysikbaserad djupinlärning för optisk dataöverföring och distribuerad avkänning IEEE Transactions on Wireless Communications. 24(3):2574-2589 |
| Subject Terms: | model-based learning, orthogonal matching pursuit (OMP), machine learning, Hardware impairments, integrated sensing and communication (ISAC) |
| Description: | We study model-based end-to-end learning in the context of integrated sensing and communication (ISAC) under hardware impairments. Hardware impairments are usually addressed by means of array calibration with a focus on communication performance. However, residual impairments may exist that affect sensing performance. This paper proposes a data-driven framework for mitigating such impairments. A monostatic orthogonal frequency-division multiplexing (OFDM) sensing and multiple-input single-output (MISO) communication scenario is considered, incorporating hardware imperfections at the ISAC transceiver antenna array. We propose a novel differentiable version of the orthogonal matching pursuit (OMP) algorithm that is suitable for multi-target sensing and allows for efficient end-to-end learning of the hardware impairments. Based on the differentiable OMP, we devise two model-based parameterization strategies of the ISAC beamformer and sensing receiver to account for hardware impairments: (i) learning a dictionary of steering vectors for different angles and (ii) learning the parameterized hardware impairments. We carry out a comprehensive performance analysis of the proposed model-based learning approaches and a strong baseline consisting of least-squares beamforming, conventional OMP, and maximum-likelihood symbol detection for communication. Results show that by parameterizing the hardware impairments, learning approaches offer gains in terms of higher detection probability, position estimation accuracy, and lower symbol error rate (SER) compared to the baseline. We demonstrate that learning the parameterized hardware impairments outperforms learning a dictionary of steering vectors, also exhibiting the lowest complexity. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/545794 https://research.chalmers.se/publication/544634 https://research.chalmers.se/publication/544943 https://research.chalmers.se/publication/538602 https://research.chalmers.se/publication/545794/file/545794_Fulltext.pdf |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/545794# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=15582248&ISBN=&volume=24&issue=3&date=20250101&spage=2574&pages=2574-2589&title=SAICOM Hårdvarumedveten integrerad lokalisering och avkänning för kommunikationssystem A holistic flagship towards the 6G network platform and system, to inspire digital transformation, for the world to act together in meeting needs in society and ecosystems with novel 6G services Fysikbaserad djupinlärning för optisk dataöverföring och distribuerad avkänning IEEE Transactions on Wireless Communications&atitle=Model-Based%20End-to-End%20Learning%20for%20Multi-Target%20Integrated%20Sensing%20and%20Communication%20under%20Hardware%20Impairments&aulast=Mateos%20Ramos%2C%20Jos%C3%A9%20Miguel&id=DOI:10.1109/TWC.2024.3522667 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Ramos%20M Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.c4f4f439.f1b0.40c1.8d29.117eceffd9de RelevancyScore: 1115 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1114.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Model-Based End-to-End Learning for Multi-Target Integrated Sensing and Communication under Hardware Impairments – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Mateos+Ramos%2C+José+Miguel%22">Mateos Ramos, José Miguel</searchLink>, 1998<br /><searchLink fieldCode="AR" term="%22Häger%2C+Christian%22">Häger, Christian</searchLink>, 1986<br /><searchLink fieldCode="AR" term="%22Keskin%2C+Musa+Furkan%22">Keskin, Musa Furkan</searchLink>, 1988<br /><searchLink fieldCode="AR" term="%22Le+Magoarou%2C+Luc%22">Le Magoarou, Luc</searchLink><br /><searchLink fieldCode="AR" term="%22Wymeersch%2C+Henk%22">Wymeersch, Henk</searchLink>, 1976 – Name: TitleSource Label: Source Group: Src Data: <i>SAICOM Hårdvarumedveten integrerad lokalisering och avkänning för kommunikationssystem A holistic flagship towards the 6G network platform and system, to inspire digital transformation, for the world to act together in meeting needs in society and ecosystems with novel 6G services Fysikbaserad djupinlärning för optisk dataöverföring och distribuerad avkänning IEEE Transactions on Wireless Communications</i>. 24(3):2574-2589 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22model-based+learning%22">model-based learning</searchLink><br /><searchLink fieldCode="DE" term="%22orthogonal+matching+pursuit+%28OMP%29%22">orthogonal matching pursuit (OMP)</searchLink><br /><searchLink fieldCode="DE" term="%22machine+learning%22">machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22Hardware+impairments%22">Hardware impairments</searchLink><br /><searchLink fieldCode="DE" term="%22integrated+sensing+and+communication+%28ISAC%29%22">integrated sensing and communication (ISAC)</searchLink> – Name: Abstract Label: Description Group: Ab Data: We study model-based end-to-end learning in the context of integrated sensing and communication (ISAC) under hardware impairments. Hardware impairments are usually addressed by means of array calibration with a focus on communication performance. However, residual impairments may exist that affect sensing performance. This paper proposes a data-driven framework for mitigating such impairments. A monostatic orthogonal frequency-division multiplexing (OFDM) sensing and multiple-input single-output (MISO) communication scenario is considered, incorporating hardware imperfections at the ISAC transceiver antenna array. We propose a novel differentiable version of the orthogonal matching pursuit (OMP) algorithm that is suitable for multi-target sensing and allows for efficient end-to-end learning of the hardware impairments. Based on the differentiable OMP, we devise two model-based parameterization strategies of the ISAC beamformer and sensing receiver to account for hardware impairments: (i) learning a dictionary of steering vectors for different angles and (ii) learning the parameterized hardware impairments. We carry out a comprehensive performance analysis of the proposed model-based learning approaches and a strong baseline consisting of least-squares beamforming, conventional OMP, and maximum-likelihood symbol detection for communication. Results show that by parameterizing the hardware impairments, learning approaches offer gains in terms of higher detection probability, position estimation accuracy, and lower symbol error rate (SER) compared to the baseline. We demonstrate that learning the parameterized hardware impairments outperforms learning a dictionary of steering vectors, also exhibiting the lowest complexity. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545794" linkWindow="_blank">https://research.chalmers.se/publication/545794</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/544634" linkWindow="_blank">https://research.chalmers.se/publication/544634</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/544943" linkWindow="_blank">https://research.chalmers.se/publication/544943</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/538602" linkWindow="_blank">https://research.chalmers.se/publication/538602</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545794/file/545794_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/545794/file/545794_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.c4f4f439.f1b0.40c1.8d29.117eceffd9de |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/TWC.2024.3522667 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 16 StartPage: 2574 Subjects: – SubjectFull: model-based learning Type: general – SubjectFull: orthogonal matching pursuit (OMP) Type: general – SubjectFull: machine learning Type: general – SubjectFull: Hardware impairments Type: general – SubjectFull: integrated sensing and communication (ISAC) Type: general Titles: – TitleFull: Model-Based End-to-End Learning for Multi-Target Integrated Sensing and Communication under Hardware Impairments Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Mateos Ramos, José Miguel – PersonEntity: Name: NameFull: Häger, Christian – PersonEntity: Name: NameFull: Keskin, Musa Furkan – PersonEntity: Name: NameFull: Le Magoarou, Luc – PersonEntity: Name: NameFull: Wymeersch, Henk IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 15582248 – Type: issn-print Value: 15361276 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 24 – Type: issue Value: 3 Titles: – TitleFull: SAICOM Hårdvarumedveten integrerad lokalisering och avkänning för kommunikationssystem A holistic flagship towards the 6G network platform and system, to inspire digital transformation, for the world to act together in meeting needs in society and ecosystems with novel 6G services Fysikbaserad djupinlärning för optisk dataöverföring och distribuerad avkänning IEEE Transactions on Wireless Communications Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science