Model-Based End-to-End Learning for Multi-Target Integrated Sensing and Communication under Hardware Impairments

Uloženo v:
Podrobná bibliografie
Název: Model-Based End-to-End Learning for Multi-Target Integrated Sensing and Communication under Hardware Impairments
Autoři: Mateos Ramos, José Miguel, 1998, Häger, Christian, 1986, Keskin, Musa Furkan, 1988, Le Magoarou, Luc, Wymeersch, Henk, 1976
Zdroj: SAICOM Hårdvarumedveten integrerad lokalisering och avkänning för kommunikationssystem A holistic flagship towards the 6G network platform and system, to inspire digital transformation, for the world to act together in meeting needs in society and ecosystems with novel 6G services Fysikbaserad djupinlärning för optisk dataöverföring och distribuerad avkänning IEEE Transactions on Wireless Communications. 24(3):2574-2589
Témata: model-based learning, orthogonal matching pursuit (OMP), machine learning, Hardware impairments, integrated sensing and communication (ISAC)
Popis: We study model-based end-to-end learning in the context of integrated sensing and communication (ISAC) under hardware impairments. Hardware impairments are usually addressed by means of array calibration with a focus on communication performance. However, residual impairments may exist that affect sensing performance. This paper proposes a data-driven framework for mitigating such impairments. A monostatic orthogonal frequency-division multiplexing (OFDM) sensing and multiple-input single-output (MISO) communication scenario is considered, incorporating hardware imperfections at the ISAC transceiver antenna array. We propose a novel differentiable version of the orthogonal matching pursuit (OMP) algorithm that is suitable for multi-target sensing and allows for efficient end-to-end learning of the hardware impairments. Based on the differentiable OMP, we devise two model-based parameterization strategies of the ISAC beamformer and sensing receiver to account for hardware impairments: (i) learning a dictionary of steering vectors for different angles and (ii) learning the parameterized hardware impairments. We carry out a comprehensive performance analysis of the proposed model-based learning approaches and a strong baseline consisting of least-squares beamforming, conventional OMP, and maximum-likelihood symbol detection for communication. Results show that by parameterizing the hardware impairments, learning approaches offer gains in terms of higher detection probability, position estimation accuracy, and lower symbol error rate (SER) compared to the baseline. We demonstrate that learning the parameterized hardware impairments outperforms learning a dictionary of steering vectors, also exhibiting the lowest complexity.
Popis souboru: electronic
Přístupová URL adresa: https://research.chalmers.se/publication/545794
https://research.chalmers.se/publication/544634
https://research.chalmers.se/publication/544943
https://research.chalmers.se/publication/538602
https://research.chalmers.se/publication/545794/file/545794_Fulltext.pdf
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/545794#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=15582248&ISBN=&volume=24&issue=3&date=20250101&spage=2574&pages=2574-2589&title=SAICOM Hårdvarumedveten integrerad lokalisering och avkänning för kommunikationssystem A holistic flagship towards the 6G network platform and system, to inspire digital transformation, for the world to act together in meeting needs in society and ecosystems with novel 6G services Fysikbaserad djupinlärning för optisk dataöverföring och distribuerad avkänning IEEE Transactions on Wireless Communications&atitle=Model-Based%20End-to-End%20Learning%20for%20Multi-Target%20Integrated%20Sensing%20and%20Communication%20under%20Hardware%20Impairments&aulast=Mateos%20Ramos%2C%20Jos%C3%A9%20Miguel&id=DOI:10.1109/TWC.2024.3522667
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Ramos%20M
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.c4f4f439.f1b0.40c1.8d29.117eceffd9de
RelevancyScore: 1115
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1114.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Model-Based End-to-End Learning for Multi-Target Integrated Sensing and Communication under Hardware Impairments
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Mateos+Ramos%2C+José+Miguel%22">Mateos Ramos, José Miguel</searchLink>, 1998<br /><searchLink fieldCode="AR" term="%22Häger%2C+Christian%22">Häger, Christian</searchLink>, 1986<br /><searchLink fieldCode="AR" term="%22Keskin%2C+Musa+Furkan%22">Keskin, Musa Furkan</searchLink>, 1988<br /><searchLink fieldCode="AR" term="%22Le+Magoarou%2C+Luc%22">Le Magoarou, Luc</searchLink><br /><searchLink fieldCode="AR" term="%22Wymeersch%2C+Henk%22">Wymeersch, Henk</searchLink>, 1976
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>SAICOM Hårdvarumedveten integrerad lokalisering och avkänning för kommunikationssystem A holistic flagship towards the 6G network platform and system, to inspire digital transformation, for the world to act together in meeting needs in society and ecosystems with novel 6G services Fysikbaserad djupinlärning för optisk dataöverföring och distribuerad avkänning IEEE Transactions on Wireless Communications</i>. 24(3):2574-2589
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22model-based+learning%22">model-based learning</searchLink><br /><searchLink fieldCode="DE" term="%22orthogonal+matching+pursuit+%28OMP%29%22">orthogonal matching pursuit (OMP)</searchLink><br /><searchLink fieldCode="DE" term="%22machine+learning%22">machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22Hardware+impairments%22">Hardware impairments</searchLink><br /><searchLink fieldCode="DE" term="%22integrated+sensing+and+communication+%28ISAC%29%22">integrated sensing and communication (ISAC)</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: We study model-based end-to-end learning in the context of integrated sensing and communication (ISAC) under hardware impairments. Hardware impairments are usually addressed by means of array calibration with a focus on communication performance. However, residual impairments may exist that affect sensing performance. This paper proposes a data-driven framework for mitigating such impairments. A monostatic orthogonal frequency-division multiplexing (OFDM) sensing and multiple-input single-output (MISO) communication scenario is considered, incorporating hardware imperfections at the ISAC transceiver antenna array. We propose a novel differentiable version of the orthogonal matching pursuit (OMP) algorithm that is suitable for multi-target sensing and allows for efficient end-to-end learning of the hardware impairments. Based on the differentiable OMP, we devise two model-based parameterization strategies of the ISAC beamformer and sensing receiver to account for hardware impairments: (i) learning a dictionary of steering vectors for different angles and (ii) learning the parameterized hardware impairments. We carry out a comprehensive performance analysis of the proposed model-based learning approaches and a strong baseline consisting of least-squares beamforming, conventional OMP, and maximum-likelihood symbol detection for communication. Results show that by parameterizing the hardware impairments, learning approaches offer gains in terms of higher detection probability, position estimation accuracy, and lower symbol error rate (SER) compared to the baseline. We demonstrate that learning the parameterized hardware impairments outperforms learning a dictionary of steering vectors, also exhibiting the lowest complexity.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545794" linkWindow="_blank">https://research.chalmers.se/publication/545794</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/544634" linkWindow="_blank">https://research.chalmers.se/publication/544634</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/544943" linkWindow="_blank">https://research.chalmers.se/publication/544943</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/538602" linkWindow="_blank">https://research.chalmers.se/publication/538602</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545794/file/545794_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/545794/file/545794_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.c4f4f439.f1b0.40c1.8d29.117eceffd9de
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/TWC.2024.3522667
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 16
        StartPage: 2574
    Subjects:
      – SubjectFull: model-based learning
        Type: general
      – SubjectFull: orthogonal matching pursuit (OMP)
        Type: general
      – SubjectFull: machine learning
        Type: general
      – SubjectFull: Hardware impairments
        Type: general
      – SubjectFull: integrated sensing and communication (ISAC)
        Type: general
    Titles:
      – TitleFull: Model-Based End-to-End Learning for Multi-Target Integrated Sensing and Communication under Hardware Impairments
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Mateos Ramos, José Miguel
      – PersonEntity:
          Name:
            NameFull: Häger, Christian
      – PersonEntity:
          Name:
            NameFull: Keskin, Musa Furkan
      – PersonEntity:
          Name:
            NameFull: Le Magoarou, Luc
      – PersonEntity:
          Name:
            NameFull: Wymeersch, Henk
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 15582248
            – Type: issn-print
              Value: 15361276
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 24
            – Type: issue
              Value: 3
          Titles:
            – TitleFull: SAICOM Hårdvarumedveten integrerad lokalisering och avkänning för kommunikationssystem A holistic flagship towards the 6G network platform and system, to inspire digital transformation, for the world to act together in meeting needs in society and ecosystems with novel 6G services Fysikbaserad djupinlärning för optisk dataöverföring och distribuerad avkänning IEEE Transactions on Wireless Communications
              Type: main
ResultId 1