Ultranarrow Semiconductor WS 2 Nanoribbon Field-Effect Transistors

Saved in:
Bibliographic Details
Title: Ultranarrow Semiconductor WS 2 Nanoribbon Field-Effect Transistors
Authors: Md Hoque, Anamul, 1988, Poliakov, Aleksandr, 1990, Munkhbat, Battulga, 1988, Iordanidou, Konstantina, 1989, Agrawal, Abhay Vivek, 1993, Yankovich, Andrew, 1983, Mallik, Sameer Kumar, 1994, Zhang, Bing, 1982, Mitra, Richa, 1992, Kalaboukhov, Alexei, 1975, Olsson, Eva, 1960, Kubatkin, Sergey, 1959, Wiktor, Julia, 1988, Lara Avila, Samuel, 1983, Shegai, Timur, 1982, Dash, Saroj Prasad, 1975
Source: Kvantplasmonik – en teknologi för foton-fotonväxelverkan på kvantnivå vid rumstemperatur 2D Heterostructure Non-volatile Spin Memory Technology (2DSPIN-TECH) Visualisering av stark växelverkan mellan ljus och materia genom NEX-GEN-STEM Tvådimensionell spintronik minnesteknik Graphene Core Project 3 (Graphene Flagship) Topologi och magnetism i nya kvantmaterial Spinntronik med topologiskt kvantmaterial och magnetisk heterostruktur Stark plasmon-exciton koppling för effektiva foton-foton interaktioner 2D material-baserad teknologi för industriella applikationer (2D-TECH) Nano Letters. 25(5):1750-1757
Subject Terms: crystallographically controlled nanostructuring, field-effect transistors, zigzagedges, transition metal dichalcogenides, diodes, 2D semiconductors, TMDs, WS2, nanoribbon
Description: Semiconducting transition metal dichalcogenides (TMDs) have attracted significant attention for their potential to develop high-performance, energy-efficient, and nanoscale electronic devices. Despite notable advancements in scaling down the gate and channel length of TMD field-effect transistors (FETs), the fabrication of sub-30 nm narrow channels and devices with atomic-scale edge control still poses challenges. Here, we demonstrate a crystallography-controlled nanostructuring technique to fabricate ultranarrow tungsten disulfide (WS2) nanoribbons as small as sub-10 nm in width. The WS2 nanoribbon junctions having different widths display diodic current-voltage characteristics, providing a way to create and tune nanoscale device properties by controlling the size of the structures. The transport properties of the nanoribbon FETs are primarily governed by narrow channel effects, where the mobility in the narrow channels is limited by edge scattering. Our findings on nanoribbon devices hold potential for developing future-generation nanometer-scale van der Waals semiconductor-based devices and circuits.
File Description: electronic
Access URL: https://research.chalmers.se/publication/545055
https://research.chalmers.se/publication/545092
https://research.chalmers.se/publication/545092/file/545092_Fulltext.pdf
Database: SwePub
Be the first to leave a comment!
You must be logged in first