NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures
Gespeichert in:
| Titel: | NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures |
|---|---|
| Autoren: | Martinez-Enguita, David, Dwivedi, Sanjiv K., Jörnsten, Rebecka, 1971, Gustafsson, Mika |
| Quelle: | Briefings in Bioinformatics. 24(5) |
| Schlagwörter: | DNA methylation, deep learning, autoencoders, biomarkers, systems medicine, transfer learning |
| Beschreibung: | Precision medicine relies on the identification of robust disease and risk factor signatures from omics data. However, current knowledge-driven approaches may overlook novel or unexpected phenomena due to the inherent biases in biological knowledge. In this study, we present a data-driven signature discovery workflow for DNA methylation analysis utilizing network-coherent autoencoders (NCAEs) with biologically relevant latent embeddings. First, we explored the architecture space of autoencoders trained on a large-scale pan-tissue compendium (n = 75 272) of human epigenome-wide association studies. We observed the emergence of co-localized patterns in the deep autoencoder latent space representations that corresponded to biological network modules. We determined the NCAE configuration with the strongest co-localization and centrality signals in the human protein interactome. Leveraging the NCAE embeddings, we then trained interpretable deep neural networks for risk factor (aging, smoking) and disease (systemic lupus erythematosus) prediction and classification tasks. Remarkably, our NCAE embedding-based models outperformed existing predictors, revealing novel DNA methylation signatures enriched in gene sets and pathways associated with the studied condition in each case. Our data-driven biomarker discovery workflow provides a generally applicable pipeline to capture relevant risk factor and disease information. By surpassing the limitations of knowledge-driven methods, our approach enhances the understanding of complex epigenetic processes, facilitating the development of more effective diagnostic and therapeutic strategies. |
| Dateibeschreibung: | electronic |
| Zugangs-URL: | https://research.chalmers.se/publication/537413 https://research.chalmers.se/publication/537413/file/537413_Fulltext.pdf |
| Datenbank: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/537413# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=1467-5463[TA]+AND+[PG]+AND+2023[PDAT] Name: FREE - PubMed Central (ISSN based link) Category: fullText Text: Full Text Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif MouseOverText: Check this PubMed for the article full text. – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=14675463&ISBN=&volume=24&issue=5&date=20230101&spage=&pages=&title=Briefings in Bioinformatics&atitle=NCAE%3A%20data-driven%20representations%20using%20a%20deep%20network-coherent%20DNA%20methylation%20autoencoder%20identify%20robust%20disease%20and%20risk%20factor%20signatures&aulast=Martinez-Enguita%2C%20David&id=DOI:10.1093/bib/bbad293 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Martinez-Enguita%20D Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.b08e55e7.e74b.4341.a2f8.c092aea1f10c RelevancyScore: 984 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 983.779541015625 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Martinez-Enguita%2C+David%22">Martinez-Enguita, David</searchLink><br /><searchLink fieldCode="AR" term="%22Dwivedi%2C+Sanjiv+K%2E%22">Dwivedi, Sanjiv K.</searchLink><br /><searchLink fieldCode="AR" term="%22Jörnsten%2C+Rebecka%22">Jörnsten, Rebecka</searchLink>, 1971<br /><searchLink fieldCode="AR" term="%22Gustafsson%2C+Mika%22">Gustafsson, Mika</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>Briefings in Bioinformatics</i>. 24(5) – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22DNA+methylation%22">DNA methylation</searchLink><br /><searchLink fieldCode="DE" term="%22deep+learning%22">deep learning</searchLink><br /><searchLink fieldCode="DE" term="%22autoencoders%22">autoencoders</searchLink><br /><searchLink fieldCode="DE" term="%22biomarkers%22">biomarkers</searchLink><br /><searchLink fieldCode="DE" term="%22systems+medicine%22">systems medicine</searchLink><br /><searchLink fieldCode="DE" term="%22transfer+learning%22">transfer learning</searchLink> – Name: Abstract Label: Description Group: Ab Data: Precision medicine relies on the identification of robust disease and risk factor signatures from omics data. However, current knowledge-driven approaches may overlook novel or unexpected phenomena due to the inherent biases in biological knowledge. In this study, we present a data-driven signature discovery workflow for DNA methylation analysis utilizing network-coherent autoencoders (NCAEs) with biologically relevant latent embeddings. First, we explored the architecture space of autoencoders trained on a large-scale pan-tissue compendium (n = 75 272) of human epigenome-wide association studies. We observed the emergence of co-localized patterns in the deep autoencoder latent space representations that corresponded to biological network modules. We determined the NCAE configuration with the strongest co-localization and centrality signals in the human protein interactome. Leveraging the NCAE embeddings, we then trained interpretable deep neural networks for risk factor (aging, smoking) and disease (systemic lupus erythematosus) prediction and classification tasks. Remarkably, our NCAE embedding-based models outperformed existing predictors, revealing novel DNA methylation signatures enriched in gene sets and pathways associated with the studied condition in each case. Our data-driven biomarker discovery workflow provides a generally applicable pipeline to capture relevant risk factor and disease information. By surpassing the limitations of knowledge-driven methods, our approach enhances the understanding of complex epigenetic processes, facilitating the development of more effective diagnostic and therapeutic strategies. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/537413" linkWindow="_blank">https://research.chalmers.se/publication/537413</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/537413/file/537413_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/537413/file/537413_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.b08e55e7.e74b.4341.a2f8.c092aea1f10c |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1093/bib/bbad293 Languages: – Text: English Subjects: – SubjectFull: DNA methylation Type: general – SubjectFull: deep learning Type: general – SubjectFull: autoencoders Type: general – SubjectFull: biomarkers Type: general – SubjectFull: systems medicine Type: general – SubjectFull: transfer learning Type: general Titles: – TitleFull: NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Martinez-Enguita, David – PersonEntity: Name: NameFull: Dwivedi, Sanjiv K. – PersonEntity: Name: NameFull: Jörnsten, Rebecka – PersonEntity: Name: NameFull: Gustafsson, Mika IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-print Value: 14675463 – Type: issn-print Value: 14774054 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 24 – Type: issue Value: 5 Titles: – TitleFull: Briefings in Bioinformatics Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science