Generalized linear models for ordered categorical data
Uložené v:
| Názov: | Generalized linear models for ordered categorical data |
|---|---|
| Autori: | Holm, Sture, 1936 |
| Zdroj: | Communications in Statistics - Theory and Methods. 52(3):670-683 |
| Predmety: | Generalized linear model, scale data, rank methods |
| Popis: | Categorical scale data are only ordinal and defined on a finite set. Continuous scale data are only ordinal and defined on a bounded interval. Due to that character, the statistical methods for scale data ought to be based on orders between outcomes only and not any metric involving distance measure. For simple two-sample scale data, variants of classical rank methods are suitable. For regression type of problems, there are known good generalized linear models for separate categories for a long time. In the present article is suggested a new generalized linear type of model based on non parametric statistics for the whole scale. Asymptotic normality for those statistics is also shown and illustrated. Both fixed and random effects are considered. |
| Popis súboru: | electronic |
| Prístupová URL adresa: | https://research.chalmers.se/publication/524119 https://research.chalmers.se/publication/524119/file/524119_Fulltext.pdf |
| Databáza: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/524119# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=03610926&ISBN=&volume=52&issue=3&date=20230101&spage=670&pages=670-683&title=Communications in Statistics - Theory and Methods&atitle=Generalized%20linear%20models%20for%20ordered%20categorical%20data&aulast=Holm%2C%20Sture&id=DOI:10.1080/03610926.2021.1921210 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Holm%20S Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.acf008d8.4cae.4d4c.972e.4f74b1b60fbb RelevancyScore: 1034 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1033.77954101563 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Generalized linear models for ordered categorical data – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Holm%2C+Sture%22">Holm, Sture</searchLink>, 1936 – Name: TitleSource Label: Source Group: Src Data: <i>Communications in Statistics - Theory and Methods</i>. 52(3):670-683 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Generalized+linear+model%22">Generalized linear model</searchLink><br /><searchLink fieldCode="DE" term="%22scale+data%22">scale data</searchLink><br /><searchLink fieldCode="DE" term="%22rank+methods%22">rank methods</searchLink> – Name: Abstract Label: Description Group: Ab Data: Categorical scale data are only ordinal and defined on a finite set. Continuous scale data are only ordinal and defined on a bounded interval. Due to that character, the statistical methods for scale data ought to be based on orders between outcomes only and not any metric involving distance measure. For simple two-sample scale data, variants of classical rank methods are suitable. For regression type of problems, there are known good generalized linear models for separate categories for a long time. In the present article is suggested a new generalized linear type of model based on non parametric statistics for the whole scale. Asymptotic normality for those statistics is also shown and illustrated. Both fixed and random effects are considered. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/524119" linkWindow="_blank">https://research.chalmers.se/publication/524119</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/524119/file/524119_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/524119/file/524119_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.acf008d8.4cae.4d4c.972e.4f74b1b60fbb |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1080/03610926.2021.1921210 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 14 StartPage: 670 Subjects: – SubjectFull: Generalized linear model Type: general – SubjectFull: scale data Type: general – SubjectFull: rank methods Type: general Titles: – TitleFull: Generalized linear models for ordered categorical data Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Holm, Sture IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-print Value: 03610926 – Type: issn-print Value: 1532415X – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 52 – Type: issue Value: 3 Titles: – TitleFull: Communications in Statistics - Theory and Methods Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science