Generalized linear models for ordered categorical data

Uložené v:
Podrobná bibliografia
Názov: Generalized linear models for ordered categorical data
Autori: Holm, Sture, 1936
Zdroj: Communications in Statistics - Theory and Methods. 52(3):670-683
Predmety: Generalized linear model, scale data, rank methods
Popis: Categorical scale data are only ordinal and defined on a finite set. Continuous scale data are only ordinal and defined on a bounded interval. Due to that character, the statistical methods for scale data ought to be based on orders between outcomes only and not any metric involving distance measure. For simple two-sample scale data, variants of classical rank methods are suitable. For regression type of problems, there are known good generalized linear models for separate categories for a long time. In the present article is suggested a new generalized linear type of model based on non parametric statistics for the whole scale. Asymptotic normality for those statistics is also shown and illustrated. Both fixed and random effects are considered.
Popis súboru: electronic
Prístupová URL adresa: https://research.chalmers.se/publication/524119
https://research.chalmers.se/publication/524119/file/524119_Fulltext.pdf
Databáza: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/524119#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=03610926&ISBN=&volume=52&issue=3&date=20230101&spage=670&pages=670-683&title=Communications in Statistics - Theory and Methods&atitle=Generalized%20linear%20models%20for%20ordered%20categorical%20data&aulast=Holm%2C%20Sture&id=DOI:10.1080/03610926.2021.1921210
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Holm%20S
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.acf008d8.4cae.4d4c.972e.4f74b1b60fbb
RelevancyScore: 1034
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1033.77954101563
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Generalized linear models for ordered categorical data
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Holm%2C+Sture%22">Holm, Sture</searchLink>, 1936
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Communications in Statistics - Theory and Methods</i>. 52(3):670-683
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Generalized+linear+model%22">Generalized linear model</searchLink><br /><searchLink fieldCode="DE" term="%22scale+data%22">scale data</searchLink><br /><searchLink fieldCode="DE" term="%22rank+methods%22">rank methods</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Categorical scale data are only ordinal and defined on a finite set. Continuous scale data are only ordinal and defined on a bounded interval. Due to that character, the statistical methods for scale data ought to be based on orders between outcomes only and not any metric involving distance measure. For simple two-sample scale data, variants of classical rank methods are suitable. For regression type of problems, there are known good generalized linear models for separate categories for a long time. In the present article is suggested a new generalized linear type of model based on non parametric statistics for the whole scale. Asymptotic normality for those statistics is also shown and illustrated. Both fixed and random effects are considered.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/524119" linkWindow="_blank">https://research.chalmers.se/publication/524119</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/524119/file/524119_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/524119/file/524119_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.acf008d8.4cae.4d4c.972e.4f74b1b60fbb
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1080/03610926.2021.1921210
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 14
        StartPage: 670
    Subjects:
      – SubjectFull: Generalized linear model
        Type: general
      – SubjectFull: scale data
        Type: general
      – SubjectFull: rank methods
        Type: general
    Titles:
      – TitleFull: Generalized linear models for ordered categorical data
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Holm, Sture
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 03610926
            – Type: issn-print
              Value: 1532415X
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 52
            – Type: issue
              Value: 3
          Titles:
            – TitleFull: Communications in Statistics - Theory and Methods
              Type: main
ResultId 1