A Mobility Model for Synthetic Travel Demand from Sparse Traces

Uloženo v:
Podrobná bibliografie
Název: A Mobility Model for Synthetic Travel Demand from Sparse Traces
Autoři: Liao, Yuan, 1991, Ek, Kristoffer, Wennerberg, Eric, Yeh, Sonia, 1973, Gil, Jorge, 1972
Zdroj: Hållbara städer: användande av stora datamängder för att förstå och hantera rörelsemönster och trafikstockningar Next generation of AdVanced InteGrated Assessment modelling to support climaTE policy making (Navigate) IEEE Open Journal of Intelligent Transportation Systems. 3:665-678
Témata: social media data, sparse mobility traces, trip distance distribution, origin-destination estimation, travel demand
Popis: Knowing how much people travel is essential for transport planning. Empirical mobility traces collected from call detail records (CDRs), location-based social networks (LBSNs), and social media data have been used widely to study mobility patterns. However, these data suffer from sparsity, an issue that has largely been overlooked. In order to extend the use of these low-cost and accessible data, this study proposes a mobility model that fills the gaps in sparse mobility traces from which one can later synthesise travel demand. The proposed model extends the fundamental mechanisms of exploration and preferential return to synthesise mobility trips. The model is tested on sparse mobility traces from Twitter. We validate our model and find good agreement on origin-destination matrices and trip distance distributions for Sweden, the Netherlands, and Saõ Paulo, Brazil, compared with a benchmark model using a heuristic method, especially for the most frequent trip distance range (1-40 km). Moreover, the learned model parameters are found to be transferable from one region to another. Using the proposed model, reasonable travel demand values can be synthesised from a dataset covering a large enough population of very sparse individual geolocations (around 1.5 geolocations per day covering 100 days on average).
Popis souboru: electronic
Přístupová URL adresa: https://research.chalmers.se/publication/534578
https://research.chalmers.se/publication/532751
https://research.chalmers.se/publication/523815
https://research.chalmers.se/publication/534578/file/534578_Fulltext.pdf
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/534578#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Liao%20Y
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.9e8d974b.1c33.420b.8dab.91922c061051
RelevancyScore: 1011
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1011.01770019531
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A Mobility Model for Synthetic Travel Demand from Sparse Traces
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Liao%2C+Yuan%22">Liao, Yuan</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Ek%2C+Kristoffer%22">Ek, Kristoffer</searchLink><br /><searchLink fieldCode="AR" term="%22Wennerberg%2C+Eric%22">Wennerberg, Eric</searchLink><br /><searchLink fieldCode="AR" term="%22Yeh%2C+Sonia%22">Yeh, Sonia</searchLink>, 1973<br /><searchLink fieldCode="AR" term="%22Gil%2C+Jorge%22">Gil, Jorge</searchLink>, 1972
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Hållbara städer: användande av stora datamängder för att förstå och hantera rörelsemönster och trafikstockningar Next generation of AdVanced InteGrated Assessment modelling to support climaTE policy making (Navigate) IEEE Open Journal of Intelligent Transportation Systems</i>. 3:665-678
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22social+media+data%22">social media data</searchLink><br /><searchLink fieldCode="DE" term="%22sparse+mobility+traces%22">sparse mobility traces</searchLink><br /><searchLink fieldCode="DE" term="%22trip+distance+distribution%22">trip distance distribution</searchLink><br /><searchLink fieldCode="DE" term="%22origin-destination+estimation%22">origin-destination estimation</searchLink><br /><searchLink fieldCode="DE" term="%22travel+demand%22">travel demand</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Knowing how much people travel is essential for transport planning. Empirical mobility traces collected from call detail records (CDRs), location-based social networks (LBSNs), and social media data have been used widely to study mobility patterns. However, these data suffer from sparsity, an issue that has largely been overlooked. In order to extend the use of these low-cost and accessible data, this study proposes a mobility model that fills the gaps in sparse mobility traces from which one can later synthesise travel demand. The proposed model extends the fundamental mechanisms of exploration and preferential return to synthesise mobility trips. The model is tested on sparse mobility traces from Twitter. We validate our model and find good agreement on origin-destination matrices and trip distance distributions for Sweden, the Netherlands, and Saõ Paulo, Brazil, compared with a benchmark model using a heuristic method, especially for the most frequent trip distance range (1-40 km). Moreover, the learned model parameters are found to be transferable from one region to another. Using the proposed model, reasonable travel demand values can be synthesised from a dataset covering a large enough population of very sparse individual geolocations (around 1.5 geolocations per day covering 100 days on average).
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/534578" linkWindow="_blank">https://research.chalmers.se/publication/534578</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/532751" linkWindow="_blank">https://research.chalmers.se/publication/532751</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/523815" linkWindow="_blank">https://research.chalmers.se/publication/523815</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/534578/file/534578_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/534578/file/534578_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.9e8d974b.1c33.420b.8dab.91922c061051
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/OJITS.2022.3209907
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 14
        StartPage: 665
    Subjects:
      – SubjectFull: social media data
        Type: general
      – SubjectFull: sparse mobility traces
        Type: general
      – SubjectFull: trip distance distribution
        Type: general
      – SubjectFull: origin-destination estimation
        Type: general
      – SubjectFull: travel demand
        Type: general
    Titles:
      – TitleFull: A Mobility Model for Synthetic Travel Demand from Sparse Traces
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Liao, Yuan
      – PersonEntity:
          Name:
            NameFull: Ek, Kristoffer
      – PersonEntity:
          Name:
            NameFull: Wennerberg, Eric
      – PersonEntity:
          Name:
            NameFull: Yeh, Sonia
      – PersonEntity:
          Name:
            NameFull: Gil, Jorge
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2022
          Identifiers:
            – Type: issn-print
              Value: 26877813
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 3
          Titles:
            – TitleFull: Hållbara städer: användande av stora datamängder för att förstå och hantera rörelsemönster och trafikstockningar Next generation of AdVanced InteGrated Assessment modelling to support climaTE policy making (Navigate) IEEE Open Journal of Intelligent Transportation Systems
              Type: main
ResultId 1