Gradient-descent methods for fast quantum state tomography

Uloženo v:
Podrobná bibliografie
Název: Gradient-descent methods for fast quantum state tomography
Autoři: Gaikwad, Akshay, 1993, Torres, Manuel Sebastian, Ahmed, Shahnawaz, 1995, Frisk Kockum, Anton, 1987
Zdroj: Kvantsimulering och kvantkommunikation med stora atomer Open Superconducting Quantum Computers (OpenSuperQPlus) Quantum Science and Technology. 10(4)
Témata: gradient descent optimization, density matrix parameterization, quantum state tomography
Popis: Quantum state tomography (QST) is a widely employed technique for characterizing the state of a quantum system. However, it is plagued by two fundamental challenges: computational and experimental complexity grows exponentially with the number of qubits, rendering experimental implementation and data post-processing arduous even for moderately sized systems. Here, we introduce gradient-descent (GD) algorithms for the post-processing step of QST in discrete- and continuous-variable systems. To ensure physically valid state reconstruction at each iteration step of the algorithm, we use various density-matrix parameterizations: Cholesky decomposition, Stiefel manifold, and projective normalization. These parameterizations have the added benefit of enabling a rank-controlled ansatz, which simplifies reconstruction when there is prior information about the system. We benchmark the performance of our GD-QST techniques against state-of-the-art methods, including constrained convex optimization, conditional generative adversarial networks, and iterative maximum likelihood estimation. Our comparison focuses on time complexity, iteration counts, data requirements, state rank, and robustness against noise. We find that rank-controlled ansatzes in our stochastic mini-batch GD-QST algorithms effectively handle noisy and incomplete data sets, yielding significantly higher reconstruction fidelity than other methods. Simulations achieving full-rank seven-qubit QST in under three minutes on a standard laptop, with 18 GB of RAM and no dedicated GPU, highlight that GD-QST is computationally more efficient and outperforms other techniques in most scenarios, offering a promising avenue for characterizing noisy intermediate-scale quantum devices. Our Python code for GD-QST algorithms is publicly available at github.com/mstorresh/GD-QST.
Popis souboru: electronic
Přístupová URL adresa: https://research.chalmers.se/publication/548723
https://research.chalmers.se/publication/548723/file/548723_Fulltext.pdf
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/548723#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Gaikwad%20A
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.97239a0f.51eb.4763.97ef.0b5671d2c41c
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Gradient-descent methods for fast quantum state tomography
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Gaikwad%2C+Akshay%22">Gaikwad, Akshay</searchLink>, 1993<br /><searchLink fieldCode="AR" term="%22Torres%2C+Manuel+Sebastian%22">Torres, Manuel Sebastian</searchLink><br /><searchLink fieldCode="AR" term="%22Ahmed%2C+Shahnawaz%22">Ahmed, Shahnawaz</searchLink>, 1995<br /><searchLink fieldCode="AR" term="%22Frisk+Kockum%2C+Anton%22">Frisk Kockum, Anton</searchLink>, 1987
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Kvantsimulering och kvantkommunikation med stora atomer Open Superconducting Quantum Computers (OpenSuperQPlus) Quantum Science and Technology</i>. 10(4)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22gradient+descent+optimization%22">gradient descent optimization</searchLink><br /><searchLink fieldCode="DE" term="%22density+matrix+parameterization%22">density matrix parameterization</searchLink><br /><searchLink fieldCode="DE" term="%22quantum+state+tomography%22">quantum state tomography</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Quantum state tomography (QST) is a widely employed technique for characterizing the state of a quantum system. However, it is plagued by two fundamental challenges: computational and experimental complexity grows exponentially with the number of qubits, rendering experimental implementation and data post-processing arduous even for moderately sized systems. Here, we introduce gradient-descent (GD) algorithms for the post-processing step of QST in discrete- and continuous-variable systems. To ensure physically valid state reconstruction at each iteration step of the algorithm, we use various density-matrix parameterizations: Cholesky decomposition, Stiefel manifold, and projective normalization. These parameterizations have the added benefit of enabling a rank-controlled ansatz, which simplifies reconstruction when there is prior information about the system. We benchmark the performance of our GD-QST techniques against state-of-the-art methods, including constrained convex optimization, conditional generative adversarial networks, and iterative maximum likelihood estimation. Our comparison focuses on time complexity, iteration counts, data requirements, state rank, and robustness against noise. We find that rank-controlled ansatzes in our stochastic mini-batch GD-QST algorithms effectively handle noisy and incomplete data sets, yielding significantly higher reconstruction fidelity than other methods. Simulations achieving full-rank seven-qubit QST in under three minutes on a standard laptop, with 18 GB of RAM and no dedicated GPU, highlight that GD-QST is computationally more efficient and outperforms other techniques in most scenarios, offering a promising avenue for characterizing noisy intermediate-scale quantum devices. Our Python code for GD-QST algorithms is publicly available at github.com/mstorresh/GD-QST.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/548723" linkWindow="_blank">https://research.chalmers.se/publication/548723</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/548723/file/548723_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/548723/file/548723_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.97239a0f.51eb.4763.97ef.0b5671d2c41c
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1088/2058-9565/ae0baa
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: gradient descent optimization
        Type: general
      – SubjectFull: density matrix parameterization
        Type: general
      – SubjectFull: quantum state tomography
        Type: general
    Titles:
      – TitleFull: Gradient-descent methods for fast quantum state tomography
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Gaikwad, Akshay
      – PersonEntity:
          Name:
            NameFull: Torres, Manuel Sebastian
      – PersonEntity:
          Name:
            NameFull: Ahmed, Shahnawaz
      – PersonEntity:
          Name:
            NameFull: Frisk Kockum, Anton
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 20589565
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 10
            – Type: issue
              Value: 4
          Titles:
            – TitleFull: Kvantsimulering och kvantkommunikation med stora atomer Open Superconducting Quantum Computers (OpenSuperQPlus) Quantum Science and Technology
              Type: main
ResultId 1