Symmetry-informed transferability of optimal parameters in the quantum approximate optimization algorithm

Gespeichert in:
Bibliographische Detailangaben
Titel: Symmetry-informed transferability of optimal parameters in the quantum approximate optimization algorithm
Autoren: Lyngfelt, Isak, 1997, Garcia Alvarez, Laura, 1990
Quelle: Physical Review A. 111(2)
Schlagwörter: Optimization problems, Quantum algorithms, Adiabatic quantum optimization
Beschreibung: One of the main limitations of variational quantum algorithms is the classical optimization of the highly dimensional nonconvex variational parameter landscape. To simplify this optimization, we can reduce the search space using problem symmetries and typical optimal parameters as initial points if they concentrate. In this article, we consider typical values of optimal parameters of the quantum approximate optimization algorithm for the MAXCUT problem with d-regular tree subgraphs and reuse them in different graph instances. We prove symmetries in the optimization landscape of several kinds of weighted and unweighted graphs, which explains the existence of multiple sets of optimal parameters. However, we observe that not all optimal sets can be successfully transferred between problem instances. We find specific transferable domains in the search space and show how to translate an arbitrary set of optimal parameters into the adequate domain using the studied symmetries. Finally, we extend these results to general classical optimization problems described by Ising Hamiltonians, the Hamiltonian variational ansatz for relevant physical models, and the recursive and multiangle quantum approximate optimization algorithms.
Dateibeschreibung: electronic
Zugangs-URL: https://research.chalmers.se/publication/545281
https://research.chalmers.se/publication/545281/file/545281_Fulltext.pdf
Datenbank: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/545281#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=24699934&ISBN=&volume=111&issue=2&date=20250101&spage=&pages=&title=Physical Review A&atitle=Symmetry-informed%20transferability%20of%20optimal%20parameters%20in%20the%20quantum%20approximate%20optimization%20algorithm&aulast=Lyngfelt%2C%20Isak&id=DOI:10.1103/PhysRevA.111.022418
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Lyngfelt%20I
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.892061df.6a0c.4bee.be58.c3156fd10001
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Symmetry-informed transferability of optimal parameters in the quantum approximate optimization algorithm
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Lyngfelt%2C+Isak%22">Lyngfelt, Isak</searchLink>, 1997<br /><searchLink fieldCode="AR" term="%22Garcia+Alvarez%2C+Laura%22">Garcia Alvarez, Laura</searchLink>, 1990
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Physical Review A</i>. 111(2)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Optimization+problems%22">Optimization problems</searchLink><br /><searchLink fieldCode="DE" term="%22Quantum+algorithms%22">Quantum algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Adiabatic+quantum+optimization%22">Adiabatic quantum optimization</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: One of the main limitations of variational quantum algorithms is the classical optimization of the highly dimensional nonconvex variational parameter landscape. To simplify this optimization, we can reduce the search space using problem symmetries and typical optimal parameters as initial points if they concentrate. In this article, we consider typical values of optimal parameters of the quantum approximate optimization algorithm for the MAXCUT problem with d-regular tree subgraphs and reuse them in different graph instances. We prove symmetries in the optimization landscape of several kinds of weighted and unweighted graphs, which explains the existence of multiple sets of optimal parameters. However, we observe that not all optimal sets can be successfully transferred between problem instances. We find specific transferable domains in the search space and show how to translate an arbitrary set of optimal parameters into the adequate domain using the studied symmetries. Finally, we extend these results to general classical optimization problems described by Ising Hamiltonians, the Hamiltonian variational ansatz for relevant physical models, and the recursive and multiangle quantum approximate optimization algorithms.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545281" linkWindow="_blank">https://research.chalmers.se/publication/545281</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545281/file/545281_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/545281/file/545281_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.892061df.6a0c.4bee.be58.c3156fd10001
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1103/PhysRevA.111.022418
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Optimization problems
        Type: general
      – SubjectFull: Quantum algorithms
        Type: general
      – SubjectFull: Adiabatic quantum optimization
        Type: general
    Titles:
      – TitleFull: Symmetry-informed transferability of optimal parameters in the quantum approximate optimization algorithm
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Lyngfelt, Isak
      – PersonEntity:
          Name:
            NameFull: Garcia Alvarez, Laura
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 24699934
            – Type: issn-print
              Value: 24699926
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 111
            – Type: issue
              Value: 2
          Titles:
            – TitleFull: Physical Review A
              Type: main
ResultId 1