Symmetry-informed transferability of optimal parameters in the quantum approximate optimization algorithm
Gespeichert in:
| Titel: | Symmetry-informed transferability of optimal parameters in the quantum approximate optimization algorithm |
|---|---|
| Autoren: | Lyngfelt, Isak, 1997, Garcia Alvarez, Laura, 1990 |
| Quelle: | Physical Review A. 111(2) |
| Schlagwörter: | Optimization problems, Quantum algorithms, Adiabatic quantum optimization |
| Beschreibung: | One of the main limitations of variational quantum algorithms is the classical optimization of the highly dimensional nonconvex variational parameter landscape. To simplify this optimization, we can reduce the search space using problem symmetries and typical optimal parameters as initial points if they concentrate. In this article, we consider typical values of optimal parameters of the quantum approximate optimization algorithm for the MAXCUT problem with d-regular tree subgraphs and reuse them in different graph instances. We prove symmetries in the optimization landscape of several kinds of weighted and unweighted graphs, which explains the existence of multiple sets of optimal parameters. However, we observe that not all optimal sets can be successfully transferred between problem instances. We find specific transferable domains in the search space and show how to translate an arbitrary set of optimal parameters into the adequate domain using the studied symmetries. Finally, we extend these results to general classical optimization problems described by Ising Hamiltonians, the Hamiltonian variational ansatz for relevant physical models, and the recursive and multiangle quantum approximate optimization algorithms. |
| Dateibeschreibung: | electronic |
| Zugangs-URL: | https://research.chalmers.se/publication/545281 https://research.chalmers.se/publication/545281/file/545281_Fulltext.pdf |
| Datenbank: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/545281# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=24699934&ISBN=&volume=111&issue=2&date=20250101&spage=&pages=&title=Physical Review A&atitle=Symmetry-informed%20transferability%20of%20optimal%20parameters%20in%20the%20quantum%20approximate%20optimization%20algorithm&aulast=Lyngfelt%2C%20Isak&id=DOI:10.1103/PhysRevA.111.022418 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Lyngfelt%20I Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.892061df.6a0c.4bee.be58.c3156fd10001 RelevancyScore: 1065 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1064.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Symmetry-informed transferability of optimal parameters in the quantum approximate optimization algorithm – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Lyngfelt%2C+Isak%22">Lyngfelt, Isak</searchLink>, 1997<br /><searchLink fieldCode="AR" term="%22Garcia+Alvarez%2C+Laura%22">Garcia Alvarez, Laura</searchLink>, 1990 – Name: TitleSource Label: Source Group: Src Data: <i>Physical Review A</i>. 111(2) – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Optimization+problems%22">Optimization problems</searchLink><br /><searchLink fieldCode="DE" term="%22Quantum+algorithms%22">Quantum algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Adiabatic+quantum+optimization%22">Adiabatic quantum optimization</searchLink> – Name: Abstract Label: Description Group: Ab Data: One of the main limitations of variational quantum algorithms is the classical optimization of the highly dimensional nonconvex variational parameter landscape. To simplify this optimization, we can reduce the search space using problem symmetries and typical optimal parameters as initial points if they concentrate. In this article, we consider typical values of optimal parameters of the quantum approximate optimization algorithm for the MAXCUT problem with d-regular tree subgraphs and reuse them in different graph instances. We prove symmetries in the optimization landscape of several kinds of weighted and unweighted graphs, which explains the existence of multiple sets of optimal parameters. However, we observe that not all optimal sets can be successfully transferred between problem instances. We find specific transferable domains in the search space and show how to translate an arbitrary set of optimal parameters into the adequate domain using the studied symmetries. Finally, we extend these results to general classical optimization problems described by Ising Hamiltonians, the Hamiltonian variational ansatz for relevant physical models, and the recursive and multiangle quantum approximate optimization algorithms. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545281" linkWindow="_blank">https://research.chalmers.se/publication/545281</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545281/file/545281_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/545281/file/545281_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.892061df.6a0c.4bee.be58.c3156fd10001 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1103/PhysRevA.111.022418 Languages: – Text: English Subjects: – SubjectFull: Optimization problems Type: general – SubjectFull: Quantum algorithms Type: general – SubjectFull: Adiabatic quantum optimization Type: general Titles: – TitleFull: Symmetry-informed transferability of optimal parameters in the quantum approximate optimization algorithm Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Lyngfelt, Isak – PersonEntity: Name: NameFull: Garcia Alvarez, Laura IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 24699934 – Type: issn-print Value: 24699926 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 111 – Type: issue Value: 2 Titles: – TitleFull: Physical Review A Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science