Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations

Saved in:
Bibliographic Details
Title: Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations
Authors: Bréhier, Charles-Edouard, Cohen, David, 1977
Source: Numerisk analys och simulering av PDE med slumpmässig dispersion Applied Numerical Mathematics. 186:57-83
Subject Terms: Geometric numerical integration, Stochastic partial differential equations, Strong convergence, Trace formulas, Stochastic Schrödinger equations, Splitting integrators
Description: We analyze the qualitative properties and the order of convergence of a splitting scheme for a class of nonlinear stochastic Schrödinger equations driven by additive Itô noise. The class of nonlinearities of interest includes nonlocal interaction cubic nonlinearities. We show that the numerical solution is symplectic and preserves the expected mass for all times. On top of that, for the convergence analysis, some exponential moment bounds for the exact and numerical solutions are proved. This enables us to provide strong orders of convergence as well as orders of convergence in probability and almost surely. Finally, extensive numerical experiments illustrate the performance of the proposed numerical scheme.
File Description: electronic
Access URL: https://research.chalmers.se/publication/534303
https://research.chalmers.se/publication/527569
https://arxiv.org/abs/2007.02354
Database: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/534303#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=01689274&ISBN=&volume=186&issue=&date=20230101&spage=57&pages=57-83&title=Numerisk analys och simulering av PDE med slumpmässig dispersion Applied Numerical Mathematics&atitle=Analysis%20of%20a%20splitting%20scheme%20for%20a%20class%20of%20nonlinear%20stochastic%20Schr%C3%B6dinger%20equations&aulast=Br%C3%A9hier%2C%20Charles-Edouard&id=DOI:10.1016/j.apnum.2023.01.002
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Br%C3%A9hier%20C
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.73f1af16.b46b.4100.aa2e.d44b47fa256c
RelevancyScore: 1034
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1033.77954101563
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Bréhier%2C+Charles-Edouard%22">Bréhier, Charles-Edouard</searchLink><br /><searchLink fieldCode="AR" term="%22Cohen%2C+David%22">Cohen, David</searchLink>, 1977
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Numerisk analys och simulering av PDE med slumpmässig dispersion Applied Numerical Mathematics</i>. 186:57-83
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Geometric+numerical+integration%22">Geometric numerical integration</searchLink><br /><searchLink fieldCode="DE" term="%22Stochastic+partial+differential+equations%22">Stochastic partial differential equations</searchLink><br /><searchLink fieldCode="DE" term="%22Strong+convergence%22">Strong convergence</searchLink><br /><searchLink fieldCode="DE" term="%22Trace+formulas%22">Trace formulas</searchLink><br /><searchLink fieldCode="DE" term="%22Stochastic+Schrödinger+equations%22">Stochastic Schrödinger equations</searchLink><br /><searchLink fieldCode="DE" term="%22Splitting+integrators%22">Splitting integrators</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: We analyze the qualitative properties and the order of convergence of a splitting scheme for a class of nonlinear stochastic Schrödinger equations driven by additive Itô noise. The class of nonlinearities of interest includes nonlocal interaction cubic nonlinearities. We show that the numerical solution is symplectic and preserves the expected mass for all times. On top of that, for the convergence analysis, some exponential moment bounds for the exact and numerical solutions are proved. This enables us to provide strong orders of convergence as well as orders of convergence in probability and almost surely. Finally, extensive numerical experiments illustrate the performance of the proposed numerical scheme.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/534303" linkWindow="_blank">https://research.chalmers.se/publication/534303</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/527569" linkWindow="_blank">https://research.chalmers.se/publication/527569</link><br /><link linkTarget="URL" linkTerm="https://arxiv.org/abs/2007.02354" linkWindow="_blank">https://arxiv.org/abs/2007.02354</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.73f1af16.b46b.4100.aa2e.d44b47fa256c
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.apnum.2023.01.002
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 27
        StartPage: 57
    Subjects:
      – SubjectFull: Geometric numerical integration
        Type: general
      – SubjectFull: Stochastic partial differential equations
        Type: general
      – SubjectFull: Strong convergence
        Type: general
      – SubjectFull: Trace formulas
        Type: general
      – SubjectFull: Stochastic Schrödinger equations
        Type: general
      – SubjectFull: Splitting integrators
        Type: general
    Titles:
      – TitleFull: Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Bréhier, Charles-Edouard
      – PersonEntity:
          Name:
            NameFull: Cohen, David
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 01689274
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 186
          Titles:
            – TitleFull: Numerisk analys och simulering av PDE med slumpmässig dispersion Applied Numerical Mathematics
              Type: main
ResultId 1