Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations
Saved in:
| Title: | Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations |
|---|---|
| Authors: | Bréhier, Charles-Edouard, Cohen, David, 1977 |
| Source: | Numerisk analys och simulering av PDE med slumpmässig dispersion Applied Numerical Mathematics. 186:57-83 |
| Subject Terms: | Geometric numerical integration, Stochastic partial differential equations, Strong convergence, Trace formulas, Stochastic Schrödinger equations, Splitting integrators |
| Description: | We analyze the qualitative properties and the order of convergence of a splitting scheme for a class of nonlinear stochastic Schrödinger equations driven by additive Itô noise. The class of nonlinearities of interest includes nonlocal interaction cubic nonlinearities. We show that the numerical solution is symplectic and preserves the expected mass for all times. On top of that, for the convergence analysis, some exponential moment bounds for the exact and numerical solutions are proved. This enables us to provide strong orders of convergence as well as orders of convergence in probability and almost surely. Finally, extensive numerical experiments illustrate the performance of the proposed numerical scheme. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/534303 https://research.chalmers.se/publication/527569 https://arxiv.org/abs/2007.02354 |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/534303# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=01689274&ISBN=&volume=186&issue=&date=20230101&spage=57&pages=57-83&title=Numerisk analys och simulering av PDE med slumpmässig dispersion Applied Numerical Mathematics&atitle=Analysis%20of%20a%20splitting%20scheme%20for%20a%20class%20of%20nonlinear%20stochastic%20Schr%C3%B6dinger%20equations&aulast=Br%C3%A9hier%2C%20Charles-Edouard&id=DOI:10.1016/j.apnum.2023.01.002 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Br%C3%A9hier%20C Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.73f1af16.b46b.4100.aa2e.d44b47fa256c RelevancyScore: 1034 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1033.77954101563 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Bréhier%2C+Charles-Edouard%22">Bréhier, Charles-Edouard</searchLink><br /><searchLink fieldCode="AR" term="%22Cohen%2C+David%22">Cohen, David</searchLink>, 1977 – Name: TitleSource Label: Source Group: Src Data: <i>Numerisk analys och simulering av PDE med slumpmässig dispersion Applied Numerical Mathematics</i>. 186:57-83 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Geometric+numerical+integration%22">Geometric numerical integration</searchLink><br /><searchLink fieldCode="DE" term="%22Stochastic+partial+differential+equations%22">Stochastic partial differential equations</searchLink><br /><searchLink fieldCode="DE" term="%22Strong+convergence%22">Strong convergence</searchLink><br /><searchLink fieldCode="DE" term="%22Trace+formulas%22">Trace formulas</searchLink><br /><searchLink fieldCode="DE" term="%22Stochastic+Schrödinger+equations%22">Stochastic Schrödinger equations</searchLink><br /><searchLink fieldCode="DE" term="%22Splitting+integrators%22">Splitting integrators</searchLink> – Name: Abstract Label: Description Group: Ab Data: We analyze the qualitative properties and the order of convergence of a splitting scheme for a class of nonlinear stochastic Schrödinger equations driven by additive Itô noise. The class of nonlinearities of interest includes nonlocal interaction cubic nonlinearities. We show that the numerical solution is symplectic and preserves the expected mass for all times. On top of that, for the convergence analysis, some exponential moment bounds for the exact and numerical solutions are proved. This enables us to provide strong orders of convergence as well as orders of convergence in probability and almost surely. Finally, extensive numerical experiments illustrate the performance of the proposed numerical scheme. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/534303" linkWindow="_blank">https://research.chalmers.se/publication/534303</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/527569" linkWindow="_blank">https://research.chalmers.se/publication/527569</link><br /><link linkTarget="URL" linkTerm="https://arxiv.org/abs/2007.02354" linkWindow="_blank">https://arxiv.org/abs/2007.02354</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.73f1af16.b46b.4100.aa2e.d44b47fa256c |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1016/j.apnum.2023.01.002 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 27 StartPage: 57 Subjects: – SubjectFull: Geometric numerical integration Type: general – SubjectFull: Stochastic partial differential equations Type: general – SubjectFull: Strong convergence Type: general – SubjectFull: Trace formulas Type: general – SubjectFull: Stochastic Schrödinger equations Type: general – SubjectFull: Splitting integrators Type: general Titles: – TitleFull: Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Bréhier, Charles-Edouard – PersonEntity: Name: NameFull: Cohen, David IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-print Value: 01689274 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 186 Titles: – TitleFull: Numerisk analys och simulering av PDE med slumpmässig dispersion Applied Numerical Mathematics Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science