Prescient Collision-Free Navigation of Mobile Robots with Iterative Multimodal Motion Prediction of Dynamic Obstacles

Uloženo v:
Podrobná bibliografie
Název: Prescient Collision-Free Navigation of Mobile Robots with Iterative Multimodal Motion Prediction of Dynamic Obstacles
Autoři: Zhang, Ze, 1995, Hajieghrary, Hadi, 1983, Dean, Emmanuel, 1976, Åkesson, Knut, 1972
Zdroj: AIHURO-Intelligent människa-robot-samarbete IEEE Robotics and Automation Letters. 8(9):5488-5495
Témata: Collision avoidance, deep learning methods, Uncertainty, Vehicle dynamics, Trajectory, Robots, Mobile robots, Dynamics, autonomous agents
Popis: To explore safe interactions between a mobile robot and dynamic obstacles, this paper presents a comprehensive approach to collision-free navigation in dynamic indoor environments. The approach integrates multimodal motion predictions of dynamic obstacles with predictive control for obstacle avoidance. Multimodal Motion Prediction (MMP) is achieved by a deep-learning method that predicts multiple plausible future positions. By repeating the MMP for each time offset in the future, multi-time-step MMPs are obtained. A nonlinear Model Predictive Control (MPC) solver uses the prediction outcomes to achieve collision-free trajectory tracking for the mobile robot. The proposed integration of multimodal motion prediction and trajectory tracking outperforms other non-deep-learning methods in complex scenarios. The approach enables safe interaction between the mobile robot and stochastic dynamic obstacles.
Popis souboru: electronic
Přístupová URL adresa: https://research.chalmers.se/publication/536777
https://research.chalmers.se/publication/536777/file/536777_Fulltext.pdf
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/536777#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=23773766&ISBN=&volume=8&issue=9&date=20230101&spage=5488&pages=5488-5495&title=AIHURO-Intelligent människa-robot-samarbete IEEE Robotics and Automation Letters&atitle=Prescient%20Collision-Free%20Navigation%20of%20Mobile%20Robots%20with%20Iterative%20Multimodal%20Motion%20Prediction%20of%20Dynamic%20Obstacles&aulast=Zhang%2C%20Ze&id=DOI:10.1109/LRA.2023.3296333
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zhang%20Z
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.68b2b749.acda.43a9.b433.fdd9e1490404
RelevancyScore: 1034
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1033.77954101563
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Prescient Collision-Free Navigation of Mobile Robots with Iterative Multimodal Motion Prediction of Dynamic Obstacles
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Zhang%2C+Ze%22">Zhang, Ze</searchLink>, 1995<br /><searchLink fieldCode="AR" term="%22Hajieghrary%2C+Hadi%22">Hajieghrary, Hadi</searchLink>, 1983<br /><searchLink fieldCode="AR" term="%22Dean%2C+Emmanuel%22">Dean, Emmanuel</searchLink>, 1976<br /><searchLink fieldCode="AR" term="%22Åkesson%2C+Knut%22">Åkesson, Knut</searchLink>, 1972
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>AIHURO-Intelligent människa-robot-samarbete IEEE Robotics and Automation Letters</i>. 8(9):5488-5495
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Collision+avoidance%22">Collision avoidance</searchLink><br /><searchLink fieldCode="DE" term="%22deep+learning+methods%22">deep learning methods</searchLink><br /><searchLink fieldCode="DE" term="%22Uncertainty%22">Uncertainty</searchLink><br /><searchLink fieldCode="DE" term="%22Vehicle+dynamics%22">Vehicle dynamics</searchLink><br /><searchLink fieldCode="DE" term="%22Trajectory%22">Trajectory</searchLink><br /><searchLink fieldCode="DE" term="%22Robots%22">Robots</searchLink><br /><searchLink fieldCode="DE" term="%22Mobile+robots%22">Mobile robots</searchLink><br /><searchLink fieldCode="DE" term="%22Dynamics%22">Dynamics</searchLink><br /><searchLink fieldCode="DE" term="%22autonomous+agents%22">autonomous agents</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: To explore safe interactions between a mobile robot and dynamic obstacles, this paper presents a comprehensive approach to collision-free navigation in dynamic indoor environments. The approach integrates multimodal motion predictions of dynamic obstacles with predictive control for obstacle avoidance. Multimodal Motion Prediction (MMP) is achieved by a deep-learning method that predicts multiple plausible future positions. By repeating the MMP for each time offset in the future, multi-time-step MMPs are obtained. A nonlinear Model Predictive Control (MPC) solver uses the prediction outcomes to achieve collision-free trajectory tracking for the mobile robot. The proposed integration of multimodal motion prediction and trajectory tracking outperforms other non-deep-learning methods in complex scenarios. The approach enables safe interaction between the mobile robot and stochastic dynamic obstacles.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/536777" linkWindow="_blank">https://research.chalmers.se/publication/536777</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/536777/file/536777_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/536777/file/536777_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.68b2b749.acda.43a9.b433.fdd9e1490404
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/LRA.2023.3296333
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 8
        StartPage: 5488
    Subjects:
      – SubjectFull: Collision avoidance
        Type: general
      – SubjectFull: deep learning methods
        Type: general
      – SubjectFull: Uncertainty
        Type: general
      – SubjectFull: Vehicle dynamics
        Type: general
      – SubjectFull: Trajectory
        Type: general
      – SubjectFull: Robots
        Type: general
      – SubjectFull: Mobile robots
        Type: general
      – SubjectFull: Dynamics
        Type: general
      – SubjectFull: autonomous agents
        Type: general
    Titles:
      – TitleFull: Prescient Collision-Free Navigation of Mobile Robots with Iterative Multimodal Motion Prediction of Dynamic Obstacles
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zhang, Ze
      – PersonEntity:
          Name:
            NameFull: Hajieghrary, Hadi
      – PersonEntity:
          Name:
            NameFull: Dean, Emmanuel
      – PersonEntity:
          Name:
            NameFull: Åkesson, Knut
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 23773766
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 8
            – Type: issue
              Value: 9
          Titles:
            – TitleFull: AIHURO-Intelligent människa-robot-samarbete IEEE Robotics and Automation Letters
              Type: main
ResultId 1