Optimal sampling in unbiased active learning
Uložené v:
| Názov: | Optimal sampling in unbiased active learning |
|---|---|
| Autori: | Imberg, Henrik, 1991, Jonasson, Johan, 1966, Axelson-Fisk, Marina, 1972 |
| Zdroj: | Statistical sampling in machine learning 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), Online Proceedings of Machine Learning Research. 108:559-569 |
| Predmety: | Optimal design, Weighted loss, Sampling weights, Generalised linear models, Unequal probability sampling, Active learning |
| Popis: | A common belief in unbiased active learning is that, in order to capture the most informative instances, the sampling probabilities should be proportional to the uncertainty of the class labels. We argue that this produces suboptimal predictions and present sampling schemes for unbiased pool-based active learning that minimise the actual prediction error, and demonstrate a better predictive performance than competing methods on a number of benchmark datasets. In contrast, both probabilistic and deterministic uncertainty sampling performed worse than simple random sampling on some of the datasets. |
| Popis súboru: | electronic |
| Prístupová URL adresa: | https://research.chalmers.se/publication/536361 https://research.chalmers.se/publication/520253 https://research.chalmers.se/publication/519957 http://proceedings.mlr.press/v108/imberg20a/imberg20a.pdf |
| Databáza: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/536361# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=26403498&ISBN=&volume=108&issue=&date=20200101&spage=559&pages=559-569&title=Statistical sampling in machine learning 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), Online Proceedings of Machine Learning Research&atitle=Optimal%20sampling%20in%20unbiased%20active%20learning&aulast=Imberg%2C%20Henrik&id=DOI: Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Imberg%20H Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.53697c5a.3025.4aa0.90a9.a6ec8b31f08b RelevancyScore: 909 AccessLevel: 6 PubType: Conference PubTypeId: conference PreciseRelevancyScore: 909.1474609375 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Optimal sampling in unbiased active learning – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Imberg%2C+Henrik%22">Imberg, Henrik</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Jonasson%2C+Johan%22">Jonasson, Johan</searchLink>, 1966<br /><searchLink fieldCode="AR" term="%22Axelson-Fisk%2C+Marina%22">Axelson-Fisk, Marina</searchLink>, 1972 – Name: TitleSource Label: Source Group: Src Data: <i>Statistical sampling in machine learning 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), Online Proceedings of Machine Learning Research</i>. 108:559-569 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Optimal+design%22">Optimal design</searchLink><br /><searchLink fieldCode="DE" term="%22Weighted+loss%22">Weighted loss</searchLink><br /><searchLink fieldCode="DE" term="%22Sampling+weights%22">Sampling weights</searchLink><br /><searchLink fieldCode="DE" term="%22Generalised+linear+models%22">Generalised linear models</searchLink><br /><searchLink fieldCode="DE" term="%22Unequal+probability+sampling%22">Unequal probability sampling</searchLink><br /><searchLink fieldCode="DE" term="%22Active+learning%22">Active learning</searchLink> – Name: Abstract Label: Description Group: Ab Data: A common belief in unbiased active learning is that, in order to capture the most informative instances, the sampling probabilities should be proportional to the uncertainty of the class labels. We argue that this produces suboptimal predictions and present sampling schemes for unbiased pool-based active learning that minimise the actual prediction error, and demonstrate a better predictive performance than competing methods on a number of benchmark datasets. In contrast, both probabilistic and deterministic uncertainty sampling performed worse than simple random sampling on some of the datasets. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/536361" linkWindow="_blank">https://research.chalmers.se/publication/536361</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/520253" linkWindow="_blank">https://research.chalmers.se/publication/520253</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/519957" linkWindow="_blank">https://research.chalmers.se/publication/519957</link><br /><link linkTarget="URL" linkTerm="http://proceedings.mlr.press/v108/imberg20a/imberg20a.pdf" linkWindow="_blank">http://proceedings.mlr.press/v108/imberg20a/imberg20a.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.53697c5a.3025.4aa0.90a9.a6ec8b31f08b |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English PhysicalDescription: Pagination: PageCount: 11 StartPage: 559 Subjects: – SubjectFull: Optimal design Type: general – SubjectFull: Weighted loss Type: general – SubjectFull: Sampling weights Type: general – SubjectFull: Generalised linear models Type: general – SubjectFull: Unequal probability sampling Type: general – SubjectFull: Active learning Type: general Titles: – TitleFull: Optimal sampling in unbiased active learning Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Imberg, Henrik – PersonEntity: Name: NameFull: Jonasson, Johan – PersonEntity: Name: NameFull: Axelson-Fisk, Marina IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2020 Identifiers: – Type: issn-print Value: 26403498 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 108 Titles: – TitleFull: Statistical sampling in machine learning 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), Online Proceedings of Machine Learning Research Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science