Functional calculus of quantum channels for the holomorphic discrete series of SU(1,1)
Saved in:
| Title: | Functional calculus of quantum channels for the holomorphic discrete series of SU(1,1) |
|---|---|
| Authors: | van Haastrecht, Robin, 2000 |
| Source: | Journal of Functional Analysis. 289(6) |
| Subject Terms: | Wehrl inequality, Quantum channels, Reproducing kernels, Hermitian symmetric spaces |
| Description: | The tensor product of two holomorphic discrete series representations of SU(1,1) can be decomposed as a direct multiplicity-free sum of infinitely many holomorphic discrete series representations. I shall introduce equivariant quantum channels for each component of the direct sum by mapping the tensor product of an operator and the identity onto the projection onto one of the irreducible components, generalizing the construction of pure equivariant quantum channels for compact groups. Then I calculate the functional calculus of this operator for polynomials and prove a limit formula for the trace of the functional calculus for any differentiable function. The methods I used are the theory of reproducing kernel Hilbert spaces and a Plancherel theorem for the disk D=SU(1,1)/U(1), together with exact constants for the eigenvalues of the Berezin transform. I prove that the limit of the trace of the functional calculus can be expressed using generalized Husimi functions or using Berezin transforms. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/546322 https://research.chalmers.se/publication/546322/file/546322_Fulltext.pdf |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/546322# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=00221236&ISBN=&volume=289&issue=6&date=20250101&spage=&pages=&title=Journal of Functional Analysis&atitle=Functional%20calculus%20of%20quantum%20channels%20for%20the%20holomorphic%20discrete%20series%20of%20SU%281%2C1%29&aulast=van%20Haastrecht%2C%20Robin&id=DOI:10.1016/j.jfa.2025.111036 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=van%20Haastrecht%20R Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.4c03ae14.5f7c.4863.9a99.1c01d316bb64 RelevancyScore: 1065 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1064.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Functional calculus of quantum channels for the holomorphic discrete series of SU(1,1) – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22van+Haastrecht%2C+Robin%22">van Haastrecht, Robin</searchLink>, 2000 – Name: TitleSource Label: Source Group: Src Data: <i>Journal of Functional Analysis</i>. 289(6) – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Wehrl+inequality%22">Wehrl inequality</searchLink><br /><searchLink fieldCode="DE" term="%22Quantum+channels%22">Quantum channels</searchLink><br /><searchLink fieldCode="DE" term="%22Reproducing+kernels%22">Reproducing kernels</searchLink><br /><searchLink fieldCode="DE" term="%22Hermitian+symmetric+spaces%22">Hermitian symmetric spaces</searchLink> – Name: Abstract Label: Description Group: Ab Data: The tensor product of two holomorphic discrete series representations of SU(1,1) can be decomposed as a direct multiplicity-free sum of infinitely many holomorphic discrete series representations. I shall introduce equivariant quantum channels for each component of the direct sum by mapping the tensor product of an operator and the identity onto the projection onto one of the irreducible components, generalizing the construction of pure equivariant quantum channels for compact groups. Then I calculate the functional calculus of this operator for polynomials and prove a limit formula for the trace of the functional calculus for any differentiable function. The methods I used are the theory of reproducing kernel Hilbert spaces and a Plancherel theorem for the disk D=SU(1,1)/U(1), together with exact constants for the eigenvalues of the Berezin transform. I prove that the limit of the trace of the functional calculus can be expressed using generalized Husimi functions or using Berezin transforms. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/546322" linkWindow="_blank">https://research.chalmers.se/publication/546322</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/546322/file/546322_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/546322/file/546322_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.4c03ae14.5f7c.4863.9a99.1c01d316bb64 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1016/j.jfa.2025.111036 Languages: – Text: English Subjects: – SubjectFull: Wehrl inequality Type: general – SubjectFull: Quantum channels Type: general – SubjectFull: Reproducing kernels Type: general – SubjectFull: Hermitian symmetric spaces Type: general Titles: – TitleFull: Functional calculus of quantum channels for the holomorphic discrete series of SU(1,1) Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: van Haastrecht, Robin IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 00221236 – Type: issn-print Value: 10960783 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 289 – Type: issue Value: 6 Titles: – TitleFull: Journal of Functional Analysis Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science