Data-Driven Soft Sensors in Pulp Refining Processes Using Artificial Neural Networks

Uloženo v:
Podrobná bibliografie
Název: Data-Driven Soft Sensors in Pulp Refining Processes Using Artificial Neural Networks
Autoři: Karlström, Anders, 1958, Hill, J., Johansson, Lars
Zdroj: BioResources. 19(1):1030-1057
Témata: Temperature, ANN models, Pulp property estimation, Consistency, Soft sensors
Popis: Pulp refining processes are most often complicated to describe using linear methodologies, and sometimes an artificial neural network (ANN) is a preferable alternative when assimilating non-linear operating data. In this study, an ANN is used to predict pulp properties, such as shives (wide), fiber length, and freeness. Both traditional process variables (external variables) and refining zone variables (internal variables) are necessary to include as model inputs. The estimation of shives (wide) results achieved an R2 (coefficient of determination) of 0.9 (0.7) for the training and (validation) sets. Corresponding measures for fiber length and freeness can be questioned using this methodology. It is shown that the maximum temperature in the flat zone can be modeled using the external variables motor load and production instead of the specific energy. This resulted in an R2 of approximately 0.9 for the training sets, while the R2 for the validation set did not reach an acceptable level – most likely due to inherent non-linearities in the process. Additional results showed that the consistency profile is difficult to estimate properly using an ANN. Instead, a model-driven sensor is preferred to be used. The main results from this study indicate that shives (wide) should be the prime candidate when introducing advanced pulp property control concepts.
Popis souboru: electronic
Přístupová URL adresa: https://research.chalmers.se/publication/539168
https://research.chalmers.se/publication/539168/file/539168_Fulltext.pdf
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/539168#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=19302126&ISBN=&volume=19&issue=1&date=20240101&spage=1030&pages=1030-1057&title=BioResources&atitle=Data-Driven%20Soft%20Sensors%20in%20Pulp%20Refining%20Processes%20Using%20Artificial%20Neural%20Networks&aulast=Karlstr%C3%B6m%2C%20Anders&id=DOI:10.15376/biores.19.1.1030-1057
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Karlstr%C3%B6m%20A
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.4b968984.f3ef.426c.af25.8aa0dcd699e6
RelevancyScore: 1064
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.41540527344
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Data-Driven Soft Sensors in Pulp Refining Processes Using Artificial Neural Networks
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Karlström%2C+Anders%22">Karlström, Anders</searchLink>, 1958<br /><searchLink fieldCode="AR" term="%22Hill%2C+J%2E%22">Hill, J.</searchLink><br /><searchLink fieldCode="AR" term="%22Johansson%2C+Lars%22">Johansson, Lars</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>BioResources</i>. 19(1):1030-1057
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Temperature%22">Temperature</searchLink><br /><searchLink fieldCode="DE" term="%22ANN+models%22">ANN models</searchLink><br /><searchLink fieldCode="DE" term="%22Pulp+property+estimation%22">Pulp property estimation</searchLink><br /><searchLink fieldCode="DE" term="%22Consistency%22">Consistency</searchLink><br /><searchLink fieldCode="DE" term="%22Soft+sensors%22">Soft sensors</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Pulp refining processes are most often complicated to describe using linear methodologies, and sometimes an artificial neural network (ANN) is a preferable alternative when assimilating non-linear operating data. In this study, an ANN is used to predict pulp properties, such as shives (wide), fiber length, and freeness. Both traditional process variables (external variables) and refining zone variables (internal variables) are necessary to include as model inputs. The estimation of shives (wide) results achieved an R2 (coefficient of determination) of 0.9 (0.7) for the training and (validation) sets. Corresponding measures for fiber length and freeness can be questioned using this methodology. It is shown that the maximum temperature in the flat zone can be modeled using the external variables motor load and production instead of the specific energy. This resulted in an R2 of approximately 0.9 for the training sets, while the R2 for the validation set did not reach an acceptable level – most likely due to inherent non-linearities in the process. Additional results showed that the consistency profile is difficult to estimate properly using an ANN. Instead, a model-driven sensor is preferred to be used. The main results from this study indicate that shives (wide) should be the prime candidate when introducing advanced pulp property control concepts.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/539168" linkWindow="_blank">https://research.chalmers.se/publication/539168</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/539168/file/539168_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/539168/file/539168_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.4b968984.f3ef.426c.af25.8aa0dcd699e6
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.15376/biores.19.1.1030-1057
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 28
        StartPage: 1030
    Subjects:
      – SubjectFull: Temperature
        Type: general
      – SubjectFull: ANN models
        Type: general
      – SubjectFull: Pulp property estimation
        Type: general
      – SubjectFull: Consistency
        Type: general
      – SubjectFull: Soft sensors
        Type: general
    Titles:
      – TitleFull: Data-Driven Soft Sensors in Pulp Refining Processes Using Artificial Neural Networks
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Karlström, Anders
      – PersonEntity:
          Name:
            NameFull: Hill, J.
      – PersonEntity:
          Name:
            NameFull: Johansson, Lars
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 19302126
            – Type: issn-print
              Value: 19302126
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 19
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: BioResources
              Type: main
ResultId 1