Learning chemical potentials and parameters from voltage data for multi-phase battery modeling

Saved in:
Bibliographic Details
Title: Learning chemical potentials and parameters from voltage data for multi-phase battery modeling
Authors: Huang, Yicun, 1992, Wik, Torsten, 1968, Finegan, Donal, Li, Yang, 1984, Zou, Changfu, 1987
Source: Modellering av pläteringsmorfologi i litiumjonbatterier för ökad säkerhet Multifysisk modellering och övervakning av litiumjonceller för nästa generations styrsystem ChemRxiv.
Subject Terms: Lithium-ion battery, Physics-based learning, Battery modeling, Bayesian model-integrated neural network, Phase transition, Chemical potential
Description: Phase transition is a crucial phenomenon in many battery chemistries, especially for lithium-ion cells based on graphite electrodes. Accurately modeling this phenomenon is important for predicting and optimizing the performance of batteries. Traditional approaches rely on the first-principle derivation of the chemical potential or, more simply, adopt open-circuit potential (OCP) data, often present limited predictive accuracy, and fail to capture the complex free-energy barriers and multi-phase intercalation dynamics. In this work, we introduce a physics-based learning framework, termed Bayesian model-integrated neural networks (BMINN), that infers electrode-specific chemical potentials and Gibbs free energies directly from current-voltage data, without relying on restrictive assumptions about their functional forms. By integrating physics-based equations with Bayesian neural networks, our method uncovers hidden physics while quantifying uncertainties, enabling enhanced robustness and accurate modeling of chemical potentials. Validated by experimental results, the proposed physics-based learning approach outperforms conventional OCP-fitted and porous electrode theory (PET)-based chemical potential models. It successfully captures critical features such as staging structures and energy barriers that govern battery dynamics and phase transitions. Furthermore, we illustrate the utility of accurate chemical potentials in operando X-ray diffraction (XRD) spectra, which provides deeper insights into the dynamics of lithium intercalation in graphite electrodes.
File Description: electronic
Access URL: https://research.chalmers.se/publication/545644
https://research.chalmers.se/publication/545644/file/545644_Fulltext.pdf
Database: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/545644#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=25732293&ISBN=&volume=&issue=&date=20250101&spage=&pages=&title=Modellering av pläteringsmorfologi i litiumjonbatterier för ökad säkerhet Multifysisk modellering och övervakning av litiumjonceller för nästa generations styrsystem ChemRxiv&atitle=Learning%20chemical%20potentials%20and%20parameters%20from%20voltage%20data%20for%20multi-phase%20battery%20modeling&aulast=Huang%2C%20Yicun&id=DOI:10.26434/chemrxiv-2025-qrkpq
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Huang%20Y
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.3f7f3b09.7d7d.4078.b6ed.77e4dcbd4ad7
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Learning chemical potentials and parameters from voltage data for multi-phase battery modeling
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Huang%2C+Yicun%22">Huang, Yicun</searchLink>, 1992<br /><searchLink fieldCode="AR" term="%22Wik%2C+Torsten%22">Wik, Torsten</searchLink>, 1968<br /><searchLink fieldCode="AR" term="%22Finegan%2C+Donal%22">Finegan, Donal</searchLink><br /><searchLink fieldCode="AR" term="%22Li%2C+Yang%22">Li, Yang</searchLink>, 1984<br /><searchLink fieldCode="AR" term="%22Zou%2C+Changfu%22">Zou, Changfu</searchLink>, 1987
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Modellering av pläteringsmorfologi i litiumjonbatterier för ökad säkerhet Multifysisk modellering och övervakning av litiumjonceller för nästa generations styrsystem ChemRxiv</i>.
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Lithium-ion+battery%22">Lithium-ion battery</searchLink><br /><searchLink fieldCode="DE" term="%22Physics-based+learning%22">Physics-based learning</searchLink><br /><searchLink fieldCode="DE" term="%22Battery+modeling%22">Battery modeling</searchLink><br /><searchLink fieldCode="DE" term="%22Bayesian+model-integrated+neural+network%22">Bayesian model-integrated neural network</searchLink><br /><searchLink fieldCode="DE" term="%22Phase+transition%22">Phase transition</searchLink><br /><searchLink fieldCode="DE" term="%22Chemical+potential%22">Chemical potential</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Phase transition is a crucial phenomenon in many battery chemistries, especially for lithium-ion cells based on graphite electrodes. Accurately modeling this phenomenon is important for predicting and optimizing the performance of batteries. Traditional approaches rely on the first-principle derivation of the chemical potential or, more simply, adopt open-circuit potential (OCP) data, often present limited predictive accuracy, and fail to capture the complex free-energy barriers and multi-phase intercalation dynamics. In this work, we introduce a physics-based learning framework, termed Bayesian model-integrated neural networks (BMINN), that infers electrode-specific chemical potentials and Gibbs free energies directly from current-voltage data, without relying on restrictive assumptions about their functional forms. By integrating physics-based equations with Bayesian neural networks, our method uncovers hidden physics while quantifying uncertainties, enabling enhanced robustness and accurate modeling of chemical potentials. Validated by experimental results, the proposed physics-based learning approach outperforms conventional OCP-fitted and porous electrode theory (PET)-based chemical potential models. It successfully captures critical features such as staging structures and energy barriers that govern battery dynamics and phase transitions. Furthermore, we illustrate the utility of accurate chemical potentials in operando X-ray diffraction (XRD) spectra, which provides deeper insights into the dynamics of lithium intercalation in graphite electrodes.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545644" linkWindow="_blank">https://research.chalmers.se/publication/545644</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545644/file/545644_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/545644/file/545644_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.3f7f3b09.7d7d.4078.b6ed.77e4dcbd4ad7
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.26434/chemrxiv-2025-qrkpq
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Lithium-ion battery
        Type: general
      – SubjectFull: Physics-based learning
        Type: general
      – SubjectFull: Battery modeling
        Type: general
      – SubjectFull: Bayesian model-integrated neural network
        Type: general
      – SubjectFull: Phase transition
        Type: general
      – SubjectFull: Chemical potential
        Type: general
    Titles:
      – TitleFull: Learning chemical potentials and parameters from voltage data for multi-phase battery modeling
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Huang, Yicun
      – PersonEntity:
          Name:
            NameFull: Wik, Torsten
      – PersonEntity:
          Name:
            NameFull: Finegan, Donal
      – PersonEntity:
          Name:
            NameFull: Li, Yang
      – PersonEntity:
          Name:
            NameFull: Zou, Changfu
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 25732293
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Titles:
            – TitleFull: Modellering av pläteringsmorfologi i litiumjonbatterier för ökad säkerhet Multifysisk modellering och övervakning av litiumjonceller för nästa generations styrsystem ChemRxiv
              Type: main
ResultId 1