Learning chemical potentials and parameters from voltage data for multi-phase battery modeling
Uloženo v:
| Název: | Learning chemical potentials and parameters from voltage data for multi-phase battery modeling |
|---|---|
| Autoři: | Huang, Yicun, 1992, Wik, Torsten, 1968, Finegan, Donal, Li, Yang, 1984, Zou, Changfu, 1987 |
| Zdroj: | Modellering av pläteringsmorfologi i litiumjonbatterier för ökad säkerhet Multifysisk modellering och övervakning av litiumjonceller för nästa generations styrsystem ChemRxiv. |
| Témata: | Lithium-ion battery, Physics-based learning, Battery modeling, Bayesian model-integrated neural network, Phase transition, Chemical potential |
| Popis: | Phase transition is a crucial phenomenon in many battery chemistries, especially for lithium-ion cells based on graphite electrodes. Accurately modeling this phenomenon is important for predicting and optimizing the performance of batteries. Traditional approaches rely on the first-principle derivation of the chemical potential or, more simply, adopt open-circuit potential (OCP) data, often present limited predictive accuracy, and fail to capture the complex free-energy barriers and multi-phase intercalation dynamics. In this work, we introduce a physics-based learning framework, termed Bayesian model-integrated neural networks (BMINN), that infers electrode-specific chemical potentials and Gibbs free energies directly from current-voltage data, without relying on restrictive assumptions about their functional forms. By integrating physics-based equations with Bayesian neural networks, our method uncovers hidden physics while quantifying uncertainties, enabling enhanced robustness and accurate modeling of chemical potentials. Validated by experimental results, the proposed physics-based learning approach outperforms conventional OCP-fitted and porous electrode theory (PET)-based chemical potential models. It successfully captures critical features such as staging structures and energy barriers that govern battery dynamics and phase transitions. Furthermore, we illustrate the utility of accurate chemical potentials in operando X-ray diffraction (XRD) spectra, which provides deeper insights into the dynamics of lithium intercalation in graphite electrodes. |
| Popis souboru: | electronic |
| Přístupová URL adresa: | https://research.chalmers.se/publication/545644 https://research.chalmers.se/publication/545644/file/545644_Fulltext.pdf |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/545644# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=25732293&ISBN=&volume=&issue=&date=20250101&spage=&pages=&title=Modellering av pläteringsmorfologi i litiumjonbatterier för ökad säkerhet Multifysisk modellering och övervakning av litiumjonceller för nästa generations styrsystem ChemRxiv&atitle=Learning%20chemical%20potentials%20and%20parameters%20from%20voltage%20data%20for%20multi-phase%20battery%20modeling&aulast=Huang%2C%20Yicun&id=DOI:10.26434/chemrxiv-2025-qrkpq Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Huang%20Y Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.3f7f3b09.7d7d.4078.b6ed.77e4dcbd4ad7 RelevancyScore: 1065 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1064.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Learning chemical potentials and parameters from voltage data for multi-phase battery modeling – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Huang%2C+Yicun%22">Huang, Yicun</searchLink>, 1992<br /><searchLink fieldCode="AR" term="%22Wik%2C+Torsten%22">Wik, Torsten</searchLink>, 1968<br /><searchLink fieldCode="AR" term="%22Finegan%2C+Donal%22">Finegan, Donal</searchLink><br /><searchLink fieldCode="AR" term="%22Li%2C+Yang%22">Li, Yang</searchLink>, 1984<br /><searchLink fieldCode="AR" term="%22Zou%2C+Changfu%22">Zou, Changfu</searchLink>, 1987 – Name: TitleSource Label: Source Group: Src Data: <i>Modellering av pläteringsmorfologi i litiumjonbatterier för ökad säkerhet Multifysisk modellering och övervakning av litiumjonceller för nästa generations styrsystem ChemRxiv</i>. – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Lithium-ion+battery%22">Lithium-ion battery</searchLink><br /><searchLink fieldCode="DE" term="%22Physics-based+learning%22">Physics-based learning</searchLink><br /><searchLink fieldCode="DE" term="%22Battery+modeling%22">Battery modeling</searchLink><br /><searchLink fieldCode="DE" term="%22Bayesian+model-integrated+neural+network%22">Bayesian model-integrated neural network</searchLink><br /><searchLink fieldCode="DE" term="%22Phase+transition%22">Phase transition</searchLink><br /><searchLink fieldCode="DE" term="%22Chemical+potential%22">Chemical potential</searchLink> – Name: Abstract Label: Description Group: Ab Data: Phase transition is a crucial phenomenon in many battery chemistries, especially for lithium-ion cells based on graphite electrodes. Accurately modeling this phenomenon is important for predicting and optimizing the performance of batteries. Traditional approaches rely on the first-principle derivation of the chemical potential or, more simply, adopt open-circuit potential (OCP) data, often present limited predictive accuracy, and fail to capture the complex free-energy barriers and multi-phase intercalation dynamics. In this work, we introduce a physics-based learning framework, termed Bayesian model-integrated neural networks (BMINN), that infers electrode-specific chemical potentials and Gibbs free energies directly from current-voltage data, without relying on restrictive assumptions about their functional forms. By integrating physics-based equations with Bayesian neural networks, our method uncovers hidden physics while quantifying uncertainties, enabling enhanced robustness and accurate modeling of chemical potentials. Validated by experimental results, the proposed physics-based learning approach outperforms conventional OCP-fitted and porous electrode theory (PET)-based chemical potential models. It successfully captures critical features such as staging structures and energy barriers that govern battery dynamics and phase transitions. Furthermore, we illustrate the utility of accurate chemical potentials in operando X-ray diffraction (XRD) spectra, which provides deeper insights into the dynamics of lithium intercalation in graphite electrodes. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545644" linkWindow="_blank">https://research.chalmers.se/publication/545644</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545644/file/545644_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/545644/file/545644_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.3f7f3b09.7d7d.4078.b6ed.77e4dcbd4ad7 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.26434/chemrxiv-2025-qrkpq Languages: – Text: English Subjects: – SubjectFull: Lithium-ion battery Type: general – SubjectFull: Physics-based learning Type: general – SubjectFull: Battery modeling Type: general – SubjectFull: Bayesian model-integrated neural network Type: general – SubjectFull: Phase transition Type: general – SubjectFull: Chemical potential Type: general Titles: – TitleFull: Learning chemical potentials and parameters from voltage data for multi-phase battery modeling Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Huang, Yicun – PersonEntity: Name: NameFull: Wik, Torsten – PersonEntity: Name: NameFull: Finegan, Donal – PersonEntity: Name: NameFull: Li, Yang – PersonEntity: Name: NameFull: Zou, Changfu IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 25732293 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Titles: – TitleFull: Modellering av pläteringsmorfologi i litiumjonbatterier för ökad säkerhet Multifysisk modellering och övervakning av litiumjonceller för nästa generations styrsystem ChemRxiv Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science