Optical Network Security Management: Requirements, Architecture and Efficient Machine Learning Models for Detection of Evolving Threats [Invited]
Uložené v:
| Názov: | Optical Network Security Management: Requirements, Architecture and Efficient Machine Learning Models for Detection of Evolving Threats [Invited] |
|---|---|
| Autori: | Furdek Prekratic, Marija, 1985, Natalino Da Silva, Carlos, 1987, Giglio, Andrea Di, Schiano, Marco |
| Zdroj: | Skydda optiska kommunikationsnätverk från cyber-säkerhetsattacker Journal of Optical Communications and Networking. 13(2):A144-A155 |
| Predmety: | Efficiency, Economic and social effects, Learning systems, Dimensionality reduction, Fiber optic networks, Network architecture, Semi-supervised learning, Infrastructure as a service (IaaS), Optical communication |
| Popis: | As the communication infrastructure that sustains critical societal services, optical networks need to function in a secure and agile way. Thus, cognitive and automated security management functionalities are needed, fueled by the proliferating machine learning (ML) techniques and compatible with common network control entities and procedures. Automated management of optical network security requires advancements both in terms of performance and efficiency of ML approaches for security diagnostics, as well as novel management architectures and functionalities. This paper tackles these challenges by proposing a novel functional block called Security Operation Center (SOC), describing its architecture, specifying key requirements on the supported functionalities and providing guidelines on its integration with optical layer controller. Moreover, to boost efficiency of ML-based security diagnostic techniques when processing high-dimensional optical performance monitoring data in the presence of previously unseen physical-layer attacks, we combine unsupervised and semi-supervised learning techniques with three different dimensionality reduction methods and analyze the resulting performance and trade-offs between ML accuracy and run time complexity. |
| Popis súboru: | electronic |
| Prístupová URL adresa: | https://research.chalmers.se/publication/523192 https://research.chalmers.se/publication/519924 https://research.chalmers.se/publication/522115 https://research.chalmers.se/publication/523192/file/523192_Fulltext.pdf |
| Databáza: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/523192# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=19430620&ISBN=&volume=13&issue=2&date=20210101&spage=A144&pages=&title=Skydda optiska kommunikationsnätverk från cyber-säkerhetsattacker Journal of Optical Communications and Networking&atitle=Optical%20Network%20Security%20Management%3A%20Requirements%2C%20Architecture%20and%20Efficient%20Machine%20Learning%20Models%20for%20Detection%20of%20Evolving%20Threats%20%5BInvited%5D&aulast=Furdek%20Prekratic%2C%20Marija&id=DOI:10.1364/JOCN.402884 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Prekratic%20F Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.3dfdf500.3c39.4580.b662.9fd37d486eb3 RelevancyScore: 1004 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1004.00384521484 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Optical Network Security Management: Requirements, Architecture and Efficient Machine Learning Models for Detection of Evolving Threats [Invited] – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Furdek+Prekratic%2C+Marija%22">Furdek Prekratic, Marija</searchLink>, 1985<br /><searchLink fieldCode="AR" term="%22Natalino+Da+Silva%2C+Carlos%22">Natalino Da Silva, Carlos</searchLink>, 1987<br /><searchLink fieldCode="AR" term="%22Giglio%2C+Andrea+Di%22">Giglio, Andrea Di</searchLink><br /><searchLink fieldCode="AR" term="%22Schiano%2C+Marco%22">Schiano, Marco</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>Skydda optiska kommunikationsnätverk från cyber-säkerhetsattacker Journal of Optical Communications and Networking</i>. 13(2):A144-A155 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Efficiency%22">Efficiency</searchLink><br /><searchLink fieldCode="DE" term="%22Economic+and+social+effects%22">Economic and social effects</searchLink><br /><searchLink fieldCode="DE" term="%22Learning+systems%22">Learning systems</searchLink><br /><searchLink fieldCode="DE" term="%22Dimensionality+reduction%22">Dimensionality reduction</searchLink><br /><searchLink fieldCode="DE" term="%22Fiber+optic+networks%22">Fiber optic networks</searchLink><br /><searchLink fieldCode="DE" term="%22Network+architecture%22">Network architecture</searchLink><br /><searchLink fieldCode="DE" term="%22Semi-supervised+learning%22">Semi-supervised learning</searchLink><br /><searchLink fieldCode="DE" term="%22Infrastructure+as+a+service+%28IaaS%29%22">Infrastructure as a service (IaaS)</searchLink><br /><searchLink fieldCode="DE" term="%22Optical+communication%22">Optical communication</searchLink> – Name: Abstract Label: Description Group: Ab Data: As the communication infrastructure that sustains critical societal services, optical networks need to function in a secure and agile way. Thus, cognitive and automated security management functionalities are needed, fueled by the proliferating machine learning (ML) techniques and compatible with common network control entities and procedures. Automated management of optical network security requires advancements both in terms of performance and efficiency of ML approaches for security diagnostics, as well as novel management architectures and functionalities. This paper tackles these challenges by proposing a novel functional block called Security Operation Center (SOC), describing its architecture, specifying key requirements on the supported functionalities and providing guidelines on its integration with optical layer controller. Moreover, to boost efficiency of ML-based security diagnostic techniques when processing high-dimensional optical performance monitoring data in the presence of previously unseen physical-layer attacks, we combine unsupervised and semi-supervised learning techniques with three different dimensionality reduction methods and analyze the resulting performance and trade-offs between ML accuracy and run time complexity. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/523192" linkWindow="_blank">https://research.chalmers.se/publication/523192</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/519924" linkWindow="_blank">https://research.chalmers.se/publication/519924</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/522115" linkWindow="_blank">https://research.chalmers.se/publication/522115</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/523192/file/523192_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/523192/file/523192_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.3dfdf500.3c39.4580.b662.9fd37d486eb3 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1364/JOCN.402884 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 12 StartPage: A144 Subjects: – SubjectFull: Efficiency Type: general – SubjectFull: Economic and social effects Type: general – SubjectFull: Learning systems Type: general – SubjectFull: Dimensionality reduction Type: general – SubjectFull: Fiber optic networks Type: general – SubjectFull: Network architecture Type: general – SubjectFull: Semi-supervised learning Type: general – SubjectFull: Infrastructure as a service (IaaS) Type: general – SubjectFull: Optical communication Type: general Titles: – TitleFull: Optical Network Security Management: Requirements, Architecture and Efficient Machine Learning Models for Detection of Evolving Threats [Invited] Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Furdek Prekratic, Marija – PersonEntity: Name: NameFull: Natalino Da Silva, Carlos – PersonEntity: Name: NameFull: Giglio, Andrea Di – PersonEntity: Name: NameFull: Schiano, Marco IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2021 Identifiers: – Type: issn-print Value: 19430620 – Type: issn-print Value: 19430639 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 13 – Type: issue Value: 2 Titles: – TitleFull: Skydda optiska kommunikationsnätverk från cyber-säkerhetsattacker Journal of Optical Communications and Networking Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science