MOSE: A Novel Orchestration Framework for Stateful Microservice Migration at the Edge

Gespeichert in:
Bibliographische Detailangaben
Titel: MOSE: A Novel Orchestration Framework for Stateful Microservice Migration at the Edge
Autoren: Calagna, Antonio, Yu, Yenchia, Giaccone, Paolo, Chiasserini, Carla Fabiana, 1970
Quelle: IEEE Transactions on Network and Service Management. 22(5):4827-4841
Schlagwörter: computer vision, machine learning, service migration, mobile networks, Edge computing
Beschreibung: Stateful migration has emerged as the dominant technology to support microservice mobility at the network edge while ensuring a satisfying experience to mobile end users. This work addresses two pivotal challenges, namely, the implementation and the orchestration of the migration process. We first introduce a novel framework that efficiently implements stateful migration and effectively orchestrates the migration process by fulfilling both network and application KPI targets. Through experimental validation using realistic microservices, we then show that our solution (i) greatly improves migration performance, yielding up to 77% decrease of the migration downtime with respect to the state of the art, and (ii) successfully addresses the strict user QoE requirements of critical scenarios featuring latency-sensitive microservices. Further, we consider two practical use cases, featuring, respectively, a AAV autopilot microservice and a multi-object tracking task, and demonstrate how our framework outperforms current state-of-the-art approaches in configuring the migration process and in meeting KPI targets.
Dateibeschreibung: electronic
Zugangs-URL: https://research.chalmers.se/publication/548731
https://research.chalmers.se/publication/548731/file/548731_Fulltext.pdf
Datenbank: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/548731#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=19324537&ISBN=&volume=22&issue=5&date=20250101&spage=4827&pages=4827-4841&title=IEEE Transactions on Network and Service Management&atitle=MOSE%3A%20A%20Novel%20Orchestration%20Framework%20for%20Stateful%20Microservice%20Migration%20at%20the%20Edge&aulast=Calagna%2C%20Antonio&id=DOI:10.1109/TNSM.2025.3579051
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Calagna%20A
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.37d5934f.5a55.4b60.9eb8.b3b6e12d2ec8
RelevancyScore: 1115
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1114.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: MOSE: A Novel Orchestration Framework for Stateful Microservice Migration at the Edge
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Calagna%2C+Antonio%22">Calagna, Antonio</searchLink><br /><searchLink fieldCode="AR" term="%22Yu%2C+Yenchia%22">Yu, Yenchia</searchLink><br /><searchLink fieldCode="AR" term="%22Giaccone%2C+Paolo%22">Giaccone, Paolo</searchLink><br /><searchLink fieldCode="AR" term="%22Chiasserini%2C+Carla+Fabiana%22">Chiasserini, Carla Fabiana</searchLink>, 1970
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>IEEE Transactions on Network and Service Management</i>. 22(5):4827-4841
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22computer+vision%22">computer vision</searchLink><br /><searchLink fieldCode="DE" term="%22machine+learning%22">machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22service+migration%22">service migration</searchLink><br /><searchLink fieldCode="DE" term="%22mobile+networks%22">mobile networks</searchLink><br /><searchLink fieldCode="DE" term="%22Edge+computing%22">Edge computing</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Stateful migration has emerged as the dominant technology to support microservice mobility at the network edge while ensuring a satisfying experience to mobile end users. This work addresses two pivotal challenges, namely, the implementation and the orchestration of the migration process. We first introduce a novel framework that efficiently implements stateful migration and effectively orchestrates the migration process by fulfilling both network and application KPI targets. Through experimental validation using realistic microservices, we then show that our solution (i) greatly improves migration performance, yielding up to 77% decrease of the migration downtime with respect to the state of the art, and (ii) successfully addresses the strict user QoE requirements of critical scenarios featuring latency-sensitive microservices. Further, we consider two practical use cases, featuring, respectively, a AAV autopilot microservice and a multi-object tracking task, and demonstrate how our framework outperforms current state-of-the-art approaches in configuring the migration process and in meeting KPI targets.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/548731" linkWindow="_blank">https://research.chalmers.se/publication/548731</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/548731/file/548731_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/548731/file/548731_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.37d5934f.5a55.4b60.9eb8.b3b6e12d2ec8
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/TNSM.2025.3579051
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 15
        StartPage: 4827
    Subjects:
      – SubjectFull: computer vision
        Type: general
      – SubjectFull: machine learning
        Type: general
      – SubjectFull: service migration
        Type: general
      – SubjectFull: mobile networks
        Type: general
      – SubjectFull: Edge computing
        Type: general
    Titles:
      – TitleFull: MOSE: A Novel Orchestration Framework for Stateful Microservice Migration at the Edge
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Calagna, Antonio
      – PersonEntity:
          Name:
            NameFull: Yu, Yenchia
      – PersonEntity:
          Name:
            NameFull: Giaccone, Paolo
      – PersonEntity:
          Name:
            NameFull: Chiasserini, Carla Fabiana
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 19324537
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 22
            – Type: issue
              Value: 5
          Titles:
            – TitleFull: IEEE Transactions on Network and Service Management
              Type: main
ResultId 1