Data-driven optimization for rebalancing shared electric scooters

Gespeichert in:
Bibliographische Detailangaben
Titel: Data-driven optimization for rebalancing shared electric scooters
Autoren: Guan, Yanxia, Tian, Xuecheng, Jin, Sheng, Gao, Kun, 1993, Yi, Wen, Jin, Yong, Hu, Xiaosong, Wang, Shuaian
Quelle: Electronic Research Archive. 32(9):5377-5391
Schlagwörter: rebalancing problem, data-driven optimization, uncertain user demand, shared electric scooters
Beschreibung: Shared electric scooters have become a popular and flexible transportation mode in recent years. However, managing these systems, especially the rebalancing of scooters, poses significant challenges due to the unpredictable nature of user demand. To tackle this issue, we developed a stochastic optimization model (M0) aimed at minimizing transportation costs and penalties associated with unmet demand. To solve this model, we initially introduced a mean-value optimization model (M1), which uses average historical values for user demand. Subsequently, to capture the variability and uncertainty more accurately, we proposed a data-driven optimization model (M2) that uses the empirical distribution of historical data. Through computational experiments, we assessed both models’ performance. The results consistently showed that M2 outperformed M1, effectively managing stochastic demand across various scenarios. Additionally, sensitivity analyses confirmed the adaptability of M2. Our findings offer practical insights for improving the efficiency of shared electric scooter systems under uncertain demand conditions.
Dateibeschreibung: electronic
Zugangs-URL: https://research.chalmers.se/publication/543304
https://research.chalmers.se/publication/543264
https://research.chalmers.se/publication/543304/file/543304_Fulltext.pdf
Datenbank: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/543304#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=26881594&ISBN=&volume=32&issue=9&date=20240101&spage=5377&pages=5377-5391&title=Electronic Research Archive&atitle=Data-driven%20optimization%20for%20rebalancing%20shared%20electric%20scooters&aulast=Guan%2C%20Yanxia&id=DOI:10.3934/ERA.2024249
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Guan%20Y
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.3720b51e.8369.4743.bde7.1fb040ce5063
RelevancyScore: 1064
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.41540527344
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Data-driven optimization for rebalancing shared electric scooters
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Guan%2C+Yanxia%22">Guan, Yanxia</searchLink><br /><searchLink fieldCode="AR" term="%22Tian%2C+Xuecheng%22">Tian, Xuecheng</searchLink><br /><searchLink fieldCode="AR" term="%22Jin%2C+Sheng%22">Jin, Sheng</searchLink><br /><searchLink fieldCode="AR" term="%22Gao%2C+Kun%22">Gao, Kun</searchLink>, 1993<br /><searchLink fieldCode="AR" term="%22Yi%2C+Wen%22">Yi, Wen</searchLink><br /><searchLink fieldCode="AR" term="%22Jin%2C+Yong%22">Jin, Yong</searchLink><br /><searchLink fieldCode="AR" term="%22Hu%2C+Xiaosong%22">Hu, Xiaosong</searchLink><br /><searchLink fieldCode="AR" term="%22Wang%2C+Shuaian%22">Wang, Shuaian</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Electronic Research Archive</i>. 32(9):5377-5391
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22rebalancing+problem%22">rebalancing problem</searchLink><br /><searchLink fieldCode="DE" term="%22data-driven+optimization%22">data-driven optimization</searchLink><br /><searchLink fieldCode="DE" term="%22uncertain+user+demand%22">uncertain user demand</searchLink><br /><searchLink fieldCode="DE" term="%22shared+electric+scooters%22">shared electric scooters</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Shared electric scooters have become a popular and flexible transportation mode in recent years. However, managing these systems, especially the rebalancing of scooters, poses significant challenges due to the unpredictable nature of user demand. To tackle this issue, we developed a stochastic optimization model (M0) aimed at minimizing transportation costs and penalties associated with unmet demand. To solve this model, we initially introduced a mean-value optimization model (M1), which uses average historical values for user demand. Subsequently, to capture the variability and uncertainty more accurately, we proposed a data-driven optimization model (M2) that uses the empirical distribution of historical data. Through computational experiments, we assessed both models’ performance. The results consistently showed that M2 outperformed M1, effectively managing stochastic demand across various scenarios. Additionally, sensitivity analyses confirmed the adaptability of M2. Our findings offer practical insights for improving the efficiency of shared electric scooter systems under uncertain demand conditions.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/543304" linkWindow="_blank">https://research.chalmers.se/publication/543304</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/543264" linkWindow="_blank">https://research.chalmers.se/publication/543264</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/543304/file/543304_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/543304/file/543304_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.3720b51e.8369.4743.bde7.1fb040ce5063
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3934/ERA.2024249
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 15
        StartPage: 5377
    Subjects:
      – SubjectFull: rebalancing problem
        Type: general
      – SubjectFull: data-driven optimization
        Type: general
      – SubjectFull: uncertain user demand
        Type: general
      – SubjectFull: shared electric scooters
        Type: general
    Titles:
      – TitleFull: Data-driven optimization for rebalancing shared electric scooters
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Guan, Yanxia
      – PersonEntity:
          Name:
            NameFull: Tian, Xuecheng
      – PersonEntity:
          Name:
            NameFull: Jin, Sheng
      – PersonEntity:
          Name:
            NameFull: Gao, Kun
      – PersonEntity:
          Name:
            NameFull: Yi, Wen
      – PersonEntity:
          Name:
            NameFull: Jin, Yong
      – PersonEntity:
          Name:
            NameFull: Hu, Xiaosong
      – PersonEntity:
          Name:
            NameFull: Wang, Shuaian
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 26881594
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 32
            – Type: issue
              Value: 9
          Titles:
            – TitleFull: Electronic Research Archive
              Type: main
ResultId 1