Poisson Multi-Bernoulli Mapping Using Gibbs Sampling

Uloženo v:
Podrobná bibliografie
Název: Poisson Multi-Bernoulli Mapping Using Gibbs Sampling
Autoři: Fatemi, Maryam, 1982, Granström, Karl, 1981, Svensson, Lennart, 1976, Ruiz, F. J. R., Hammarstrand, Lars, 1979
Zdroj: COPPLAR CampusShuttle cooperative perception & planning platform IEEE Transactions on Signal Processing. 65(11):2814-2827
Témata: Statistical mapping, extended object, Monte Carlo methods, inference algorithms, sampling methods
Popis: This paper addresses the mapping problem. Using a conjugate prior form, we derive the exact theoretical batch multiobject posterior density of the map given a set of measurements. The landmarks in the map are modeled as extended objects, and the measurements are described as a Poisson process, conditioned on the map. We use a Poisson process prior on the map and prove that the posterior distribution is a hybrid Poisson, multi-Bernoulli mixture distribution. We devise a Gibbs sampling algorithm to sample from the batch multiobject posterior. The proposed method can handle uncertainties in the data associations and the cardinality of the set of landmarks, and is parallelizable, making it suitable for large-scale problems. The performance of the proposed method is evaluated on synthetic data and is shown to outperform a state-of-the-art method.
Popis souboru: electronic
Přístupová URL adresa: https://research.chalmers.se/publication/249608
https://research.chalmers.se/publication/249608/file/249608_Fulltext.pdf
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/249608#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=19410476&ISBN=&volume=65&issue=11&date=20170101&spage=2814&pages=2814-2827&title=COPPLAR CampusShuttle cooperative perception & planning platform IEEE Transactions on Signal Processing&atitle=Poisson%20Multi-Bernoulli%20Mapping%20Using%20Gibbs%20Sampling&aulast=Fatemi%2C%20Maryam&id=DOI:10.1109/tsp.2017.2675866
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Fatemi%20M
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.2c8646ea.485e.4ce7.aee0.5fe5193fbcfa
RelevancyScore: 946
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 946.4208984375
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Poisson Multi-Bernoulli Mapping Using Gibbs Sampling
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Fatemi%2C+Maryam%22">Fatemi, Maryam</searchLink>, 1982<br /><searchLink fieldCode="AR" term="%22Granström%2C+Karl%22">Granström, Karl</searchLink>, 1981<br /><searchLink fieldCode="AR" term="%22Svensson%2C+Lennart%22">Svensson, Lennart</searchLink>, 1976<br /><searchLink fieldCode="AR" term="%22Ruiz%2C+F%2E+J%2E+R%2E%22">Ruiz, F. J. R.</searchLink><br /><searchLink fieldCode="AR" term="%22Hammarstrand%2C+Lars%22">Hammarstrand, Lars</searchLink>, 1979
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>COPPLAR CampusShuttle cooperative perception & planning platform IEEE Transactions on Signal Processing</i>. 65(11):2814-2827
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Statistical+mapping%22">Statistical mapping</searchLink><br /><searchLink fieldCode="DE" term="%22extended+object%22">extended object</searchLink><br /><searchLink fieldCode="DE" term="%22Monte+Carlo+methods%22">Monte Carlo methods</searchLink><br /><searchLink fieldCode="DE" term="%22inference+algorithms%22">inference algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22sampling+methods%22">sampling methods</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This paper addresses the mapping problem. Using a conjugate prior form, we derive the exact theoretical batch multiobject posterior density of the map given a set of measurements. The landmarks in the map are modeled as extended objects, and the measurements are described as a Poisson process, conditioned on the map. We use a Poisson process prior on the map and prove that the posterior distribution is a hybrid Poisson, multi-Bernoulli mixture distribution. We devise a Gibbs sampling algorithm to sample from the batch multiobject posterior. The proposed method can handle uncertainties in the data associations and the cardinality of the set of landmarks, and is parallelizable, making it suitable for large-scale problems. The performance of the proposed method is evaluated on synthetic data and is shown to outperform a state-of-the-art method.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/249608" linkWindow="_blank">https://research.chalmers.se/publication/249608</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/249608/file/249608_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/249608/file/249608_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.2c8646ea.485e.4ce7.aee0.5fe5193fbcfa
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/tsp.2017.2675866
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 14
        StartPage: 2814
    Subjects:
      – SubjectFull: Statistical mapping
        Type: general
      – SubjectFull: extended object
        Type: general
      – SubjectFull: Monte Carlo methods
        Type: general
      – SubjectFull: inference algorithms
        Type: general
      – SubjectFull: sampling methods
        Type: general
    Titles:
      – TitleFull: Poisson Multi-Bernoulli Mapping Using Gibbs Sampling
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Fatemi, Maryam
      – PersonEntity:
          Name:
            NameFull: Granström, Karl
      – PersonEntity:
          Name:
            NameFull: Svensson, Lennart
      – PersonEntity:
          Name:
            NameFull: Ruiz, F. J. R.
      – PersonEntity:
          Name:
            NameFull: Hammarstrand, Lars
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2017
          Identifiers:
            – Type: issn-print
              Value: 19410476
            – Type: issn-print
              Value: 1053587X
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 65
            – Type: issue
              Value: 11
          Titles:
            – TitleFull: COPPLAR CampusShuttle cooperative perception & planning platform IEEE Transactions on Signal Processing
              Type: main
ResultId 1