Lifelong Reinforcement Learning for Health-Aware Fast Charging of Lithium-ion Batteries
Saved in:
| Title: | Lifelong Reinforcement Learning for Health-Aware Fast Charging of Lithium-ion Batteries |
|---|---|
| Authors: | Yuan, Meng, 1991, Zou, Changfu, 1987 |
| Source: | Integrering av förstärkningsinlärning och prediktiv styrning för energihantering i smarta hem (SmartHEM) IEEE Transactions on Transportation Electrification. In press |
| Subject Terms: | battery degradation., Lithium-ion battery, reinforcement learning, fast charging |
| Description: | Fast charging of lithium-ion batteries remains a critical bottleneck for widespread adoption of electric vehicles and stationary energy storage systems, as improperly designed fast charging can accelerate battery degradation and shorten lifespan. In this work, we address this challenge by proposing a health-aware fast charging strategy that explicitly balances charging speed and battery longevity across the entire service life. The key innovation lies in establishing a mapping between side-reaction overpotential and the state of health (SoH) of battery, which is then used to constrain the terminal charging voltage in a twin delayed deep deterministic policy gradient (TD3) framework. By incorporating this SoH-dependent voltage constraint, our designed deep learning method mitigates side reactions and effectively extends battery life. To validate the proposed approach, a high-fidelity single particle model with electrolyte is implemented in the widely adopted PyBaMM simulation platform, capturing degradation phenomena at realistic scales. Comparative life-cycle simulations against conventional CC-CV, its variants, and constant current–constant overpotential methods show that the TD3-based controller reduces overall degradation while maintaining competitively fast charge times. These results demonstrate the practical viability of deep reinforcement learning for advanced battery management systems and pave the way for future explorations of health-aware, performance-optimized charging strategies. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/548945 https://research.chalmers.se/publication/548862 https://research.chalmers.se/publication/548945/file/548945_Fulltext.pdf |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/548945# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=23327782&ISBN=&volume=In%20press&issue=&date=20250101&spage=&pages=&title=Integrering av förstärkningsinlärning och prediktiv styrning för energihantering i smarta hem (SmartHEM) IEEE Transactions on Transportation Electrification&atitle=Lifelong%20Reinforcement%20Learning%20for%20Health-Aware%20Fast%20Charging%20of%20Lithium-ion%20Batteries&aulast=Yuan%2C%20Meng&id=DOI:10.1109/TTE.2025.3625421 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Yuan%20M Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.2913ec06.822e.4a67.97b0.2f7cd9aa70d8 RelevancyScore: 1065 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1064.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Lifelong Reinforcement Learning for Health-Aware Fast Charging of Lithium-ion Batteries – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Yuan%2C+Meng%22">Yuan, Meng</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Zou%2C+Changfu%22">Zou, Changfu</searchLink>, 1987 – Name: TitleSource Label: Source Group: Src Data: <i>Integrering av förstärkningsinlärning och prediktiv styrning för energihantering i smarta hem (SmartHEM) IEEE Transactions on Transportation Electrification</i>. In press – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22battery+degradation%2E%22">battery degradation.</searchLink><br /><searchLink fieldCode="DE" term="%22Lithium-ion+battery%22">Lithium-ion battery</searchLink><br /><searchLink fieldCode="DE" term="%22reinforcement+learning%22">reinforcement learning</searchLink><br /><searchLink fieldCode="DE" term="%22fast+charging%22">fast charging</searchLink> – Name: Abstract Label: Description Group: Ab Data: Fast charging of lithium-ion batteries remains a critical bottleneck for widespread adoption of electric vehicles and stationary energy storage systems, as improperly designed fast charging can accelerate battery degradation and shorten lifespan. In this work, we address this challenge by proposing a health-aware fast charging strategy that explicitly balances charging speed and battery longevity across the entire service life. The key innovation lies in establishing a mapping between side-reaction overpotential and the state of health (SoH) of battery, which is then used to constrain the terminal charging voltage in a twin delayed deep deterministic policy gradient (TD3) framework. By incorporating this SoH-dependent voltage constraint, our designed deep learning method mitigates side reactions and effectively extends battery life. To validate the proposed approach, a high-fidelity single particle model with electrolyte is implemented in the widely adopted PyBaMM simulation platform, capturing degradation phenomena at realistic scales. Comparative life-cycle simulations against conventional CC-CV, its variants, and constant current–constant overpotential methods show that the TD3-based controller reduces overall degradation while maintaining competitively fast charge times. These results demonstrate the practical viability of deep reinforcement learning for advanced battery management systems and pave the way for future explorations of health-aware, performance-optimized charging strategies. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/548945" linkWindow="_blank">https://research.chalmers.se/publication/548945</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/548862" linkWindow="_blank">https://research.chalmers.se/publication/548862</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/548945/file/548945_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/548945/file/548945_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.2913ec06.822e.4a67.97b0.2f7cd9aa70d8 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/TTE.2025.3625421 Languages: – Text: English Subjects: – SubjectFull: battery degradation. Type: general – SubjectFull: Lithium-ion battery Type: general – SubjectFull: reinforcement learning Type: general – SubjectFull: fast charging Type: general Titles: – TitleFull: Lifelong Reinforcement Learning for Health-Aware Fast Charging of Lithium-ion Batteries Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Yuan, Meng – PersonEntity: Name: NameFull: Zou, Changfu IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 23327782 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: In press Titles: – TitleFull: Integrering av förstärkningsinlärning och prediktiv styrning för energihantering i smarta hem (SmartHEM) IEEE Transactions on Transportation Electrification Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science