Lifelong Reinforcement Learning for Health-Aware Fast Charging of Lithium-ion Batteries

Saved in:
Bibliographic Details
Title: Lifelong Reinforcement Learning for Health-Aware Fast Charging of Lithium-ion Batteries
Authors: Yuan, Meng, 1991, Zou, Changfu, 1987
Source: Integrering av förstärkningsinlärning och prediktiv styrning för energihantering i smarta hem (SmartHEM) IEEE Transactions on Transportation Electrification. In press
Subject Terms: battery degradation., Lithium-ion battery, reinforcement learning, fast charging
Description: Fast charging of lithium-ion batteries remains a critical bottleneck for widespread adoption of electric vehicles and stationary energy storage systems, as improperly designed fast charging can accelerate battery degradation and shorten lifespan. In this work, we address this challenge by proposing a health-aware fast charging strategy that explicitly balances charging speed and battery longevity across the entire service life. The key innovation lies in establishing a mapping between side-reaction overpotential and the state of health (SoH) of battery, which is then used to constrain the terminal charging voltage in a twin delayed deep deterministic policy gradient (TD3) framework. By incorporating this SoH-dependent voltage constraint, our designed deep learning method mitigates side reactions and effectively extends battery life. To validate the proposed approach, a high-fidelity single particle model with electrolyte is implemented in the widely adopted PyBaMM simulation platform, capturing degradation phenomena at realistic scales. Comparative life-cycle simulations against conventional CC-CV, its variants, and constant current–constant overpotential methods show that the TD3-based controller reduces overall degradation while maintaining competitively fast charge times. These results demonstrate the practical viability of deep reinforcement learning for advanced battery management systems and pave the way for future explorations of health-aware, performance-optimized charging strategies.
File Description: electronic
Access URL: https://research.chalmers.se/publication/548945
https://research.chalmers.se/publication/548862
https://research.chalmers.se/publication/548945/file/548945_Fulltext.pdf
Database: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/548945#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=23327782&ISBN=&volume=In%20press&issue=&date=20250101&spage=&pages=&title=Integrering av förstärkningsinlärning och prediktiv styrning för energihantering i smarta hem (SmartHEM) IEEE Transactions on Transportation Electrification&atitle=Lifelong%20Reinforcement%20Learning%20for%20Health-Aware%20Fast%20Charging%20of%20Lithium-ion%20Batteries&aulast=Yuan%2C%20Meng&id=DOI:10.1109/TTE.2025.3625421
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Yuan%20M
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.2913ec06.822e.4a67.97b0.2f7cd9aa70d8
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Lifelong Reinforcement Learning for Health-Aware Fast Charging of Lithium-ion Batteries
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Yuan%2C+Meng%22">Yuan, Meng</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Zou%2C+Changfu%22">Zou, Changfu</searchLink>, 1987
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Integrering av förstärkningsinlärning och prediktiv styrning för energihantering i smarta hem (SmartHEM) IEEE Transactions on Transportation Electrification</i>. In press
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22battery+degradation%2E%22">battery degradation.</searchLink><br /><searchLink fieldCode="DE" term="%22Lithium-ion+battery%22">Lithium-ion battery</searchLink><br /><searchLink fieldCode="DE" term="%22reinforcement+learning%22">reinforcement learning</searchLink><br /><searchLink fieldCode="DE" term="%22fast+charging%22">fast charging</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Fast charging of lithium-ion batteries remains a critical bottleneck for widespread adoption of electric vehicles and stationary energy storage systems, as improperly designed fast charging can accelerate battery degradation and shorten lifespan. In this work, we address this challenge by proposing a health-aware fast charging strategy that explicitly balances charging speed and battery longevity across the entire service life. The key innovation lies in establishing a mapping between side-reaction overpotential and the state of health (SoH) of battery, which is then used to constrain the terminal charging voltage in a twin delayed deep deterministic policy gradient (TD3) framework. By incorporating this SoH-dependent voltage constraint, our designed deep learning method mitigates side reactions and effectively extends battery life. To validate the proposed approach, a high-fidelity single particle model with electrolyte is implemented in the widely adopted PyBaMM simulation platform, capturing degradation phenomena at realistic scales. Comparative life-cycle simulations against conventional CC-CV, its variants, and constant current–constant overpotential methods show that the TD3-based controller reduces overall degradation while maintaining competitively fast charge times. These results demonstrate the practical viability of deep reinforcement learning for advanced battery management systems and pave the way for future explorations of health-aware, performance-optimized charging strategies.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/548945" linkWindow="_blank">https://research.chalmers.se/publication/548945</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/548862" linkWindow="_blank">https://research.chalmers.se/publication/548862</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/548945/file/548945_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/548945/file/548945_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.2913ec06.822e.4a67.97b0.2f7cd9aa70d8
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/TTE.2025.3625421
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: battery degradation.
        Type: general
      – SubjectFull: Lithium-ion battery
        Type: general
      – SubjectFull: reinforcement learning
        Type: general
      – SubjectFull: fast charging
        Type: general
    Titles:
      – TitleFull: Lifelong Reinforcement Learning for Health-Aware Fast Charging of Lithium-ion Batteries
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Yuan, Meng
      – PersonEntity:
          Name:
            NameFull: Zou, Changfu
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 23327782
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: In press
          Titles:
            – TitleFull: Integrering av förstärkningsinlärning och prediktiv styrning för energihantering i smarta hem (SmartHEM) IEEE Transactions on Transportation Electrification
              Type: main
ResultId 1