Exploration of mass splitting and muon/tau mixing parameters for an eV-scale sterile neutrino with IceCube

Uloženo v:
Podrobná bibliografie
Název: Exploration of mass splitting and muon/tau mixing parameters for an eV-scale sterile neutrino with IceCube
Autoři: Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguilar, J.A., Ahlers, M., Alameddine, J. M., Amin, N.M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Ausborm, L., Axani, S. N., Bai, X., Balagopal, A. V., Baricevic, M., Barwick, S.W., Bash, S., Basu, V., Bay, R., Beatty, J.J., Tjus, Julia, 1979, Beise, J., Bellenghi, C., Benning, C., Benzvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Book Motzkin, J.Y., Boscolo Meneguolo, C., Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M.A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B.A., Coleman, A., Collin, G.H., Connolly, A., Conrad, J.M., Coppin, P., Corley, R., Correa, P., Cowen, D. F., Dave, P., De Clercq, C., Delaunay, J.J., Delgado, D., Deng, S., Desai, A., Desiati, P., De Vries, K. D., De Wasseige, G., Deyoung, T., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Dutta, K., Duvernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., El Mentawi, S., Elsaesser, D., Engel, R., Erpenbeck, H., Evans, J., Evenson, P.A., Fan, K.L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher III, J. S., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J.G., Goswami, S., Granados, A., Grant, D., Gray, S.J., Gries, O., Griffin, S., Griswold, S., Groth, K.M., Günther, C., Gutjahr, P., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamdaoui, H., Ha Minh, M., Handt, M., Hanson, K., Hardin, J., Harnisch, A.A., Hatch, P., Haungs, A., Häußler, J., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G.C., Hoffman, K.D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Janik, O., Jansson, M., Japaridze, G.S., Jeong, M., Jin, M., Jones, B.J.P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J.L., Khanal, M., Khatee Zathul, A., Kheirandish, A., Kiryluk, J., Klein, S.R., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D.J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, Emma, Kurahashi, N., Lad, N., Lagunas Gualda, C., Lamoureux, M., Larson, M.J., Latseva, S., Lauber, F., Lazar, J.P., Lee, J.W., Deholton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y., Liubarska, M., Lohfink, E., Love, C., Lozano Mariscal, C.J., Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K.B.M., Makino, Y., Manao, E., Mancina, S., Marie Sainte, W., Mariş, I.C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J.V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Micallef, J., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M.U., Noda, K., Noell, A., Novikov, A., Obertacke Pollmann, A., O'Dell, V., Oeyen, B., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Pandya, H., Park, N., Parker, G.K., Paudel, E.N., Paul, L., Pérez de los Heros, C., Pernice, T., Peterson, J., Philippen, S., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Prado Rodriguez, M., Pries, B., Procter-Murphy, R., Przybylski, G.T., Raab, C., Rack-Helleis, J., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Reichherzer, P., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E.J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, T., Schneider, J., Schröder, F.G., Schumacher, L., Sclafani, S., Seckel, D., Seikh, M., Seo, M., Seunarine, S., Sevle Myhr, P., Shah, R., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G.M., Spiering, C., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G.W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W.G., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Twagirayezu, J.P., Unland Elorrieta, M.A., Upadhyay, A.K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., Van Eijndhoven, N., Vannerom, D., Van Santen, J., Vara, J., Varsi, F., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A.Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, Nathan, Wiebusch, C.H., Williams, D.R., Witthaus, L., Wolf, A., Wolf, M., Wrede, G., Xu, X.W., Yanez, J.P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., Zilberman, P., Zimmerman, M.
Zdroj: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 858
Témata: Atmospheric neutrino IceCube TeV oscillation sterile
Popis: We present the first three-parameter fit to a 3+1 sterile neutrino model using 7.634 years of data from the IceCube Neutrino Observatory on νμ+ν‾μ charged-current interactions in the energy range 500–9976 GeV. Our analysis is sensitive to the mass-squared splitting between the heaviest and lightest mass state (Δm412), the mixing matrix element connecting muon flavor to the fourth mass state (|Uμ4|2), and the element connecting tau flavor to the fourth mass state (|Uτ4|2). Predicted propagation effects in matter enhance the signature through a resonance as atmospheric neutrinos from the Northern Hemisphere traverse the Earth to the IceCube detector at the South Pole. The remaining sterile neutrino matrix elements are left fixed, with |Ue4|2=0 and δ14=0, as they have a negligible effect, and δ24=π is set to give the most conservative limits. The result is consistent with the no-sterile neutrino hypothesis with a probability of 4.3%. Profiling the likelihood of each parameter yields the 90% confidence levels: 2.4eV2<Δm412<9.6eV2, 0.0081<|Uμ4|2<0.10, and |Uτ4|2<0.035, which narrows the allowed parameter-space for |Uτ4|2. However, the primary result of this analysis is the first map of the 3+1 parameter space exploring the interdependence of Δm412, |Uμ4|2, and |Uτ4|2.
Popis souboru: electronic
Přístupová URL adresa: https://research.chalmers.se/publication/543456
https://research.chalmers.se/publication/543456/file/543456_Fulltext.pdf
Databáze: SwePub
Popis
Abstrakt:We present the first three-parameter fit to a 3+1 sterile neutrino model using 7.634 years of data from the IceCube Neutrino Observatory on νμ+ν‾μ charged-current interactions in the energy range 500–9976 GeV. Our analysis is sensitive to the mass-squared splitting between the heaviest and lightest mass state (Δm412), the mixing matrix element connecting muon flavor to the fourth mass state (|Uμ4|2), and the element connecting tau flavor to the fourth mass state (|Uτ4|2). Predicted propagation effects in matter enhance the signature through a resonance as atmospheric neutrinos from the Northern Hemisphere traverse the Earth to the IceCube detector at the South Pole. The remaining sterile neutrino matrix elements are left fixed, with |Ue4|2=0 and δ14=0, as they have a negligible effect, and δ24=π is set to give the most conservative limits. The result is consistent with the no-sterile neutrino hypothesis with a probability of 4.3%. Profiling the likelihood of each parameter yields the 90% confidence levels: 2.4eV2<Δm412<9.6eV2, 0.0081<|Uμ4|2<0.10, and |Uτ4|2<0.035, which narrows the allowed parameter-space for |Uτ4|2. However, the primary result of this analysis is the first map of the 3+1 parameter space exploring the interdependence of Δm412, |Uμ4|2, and |Uτ4|2.
ISSN:03702693
DOI:10.1016/j.physletb.2024.139077