A Particle Swarm Optimized Independence Estimator for Blind Source Separation of Neurophysiological Time Series

Saved in:
Bibliographic Details
Title: A Particle Swarm Optimized Independence Estimator for Blind Source Separation of Neurophysiological Time Series
Authors: Grison, Agnese, Clarke, Alexander Kenneth, Muceli, Silvia, 1981, Ibáñez, Jaime, Kundu, Aritra, Farina, Dario
Source: IEEE Transactions on Biomedical Engineering. 72(1):227-237
Subject Terms: Independent component analysis, intramuscular electromyography, particle swarm optimisation, blind source separation, intracortical recording
Description: The decomposition of neurophysiological recordings into their constituent neural sources is of major importance to a diverse range of neuroscientific fields and neuroengineering applications. The advent of high density electrode probes and arrays has driven a major need for novel semi-automated and automated blind source separation methodologies that take advantage of the increased spatial resolution and coverage these new devices offer. Independent component analysis (ICA) offers a principled theoretical framework for such algorithms, but implementation inefficiencies often drive poor performance in practice, particularly for sparse sources. Here we observe that the use of a single non-linear optimization function to identify spiking sources with ICA often has a detrimental effect that precludes the recovery and correct separation of all spiking sources in the signal. We go on to propose a projection-pursuit ICA algorithm designed specifically for spiking sources, which uses a particle swarm methodology to adaptively traverse a polynomial family of non-linearities approximating the asymmetric cumulants of the sources. We robustly prove state-of-the-art decomposition performance on recordings from high density intramuscular probes and demonstrate how the particle swarm quickly finds optimal contrast non-linearities across a range of neurophysiological datasets.
Access URL: https://research.chalmers.se/publication/545007
https://research.chalmers.se/publication/544972
Database: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=00189294&ISBN=&volume=72&issue=1&date=20250101&spage=227&pages=227-237&title=IEEE Transactions on Biomedical Engineering&atitle=A%20Particle%20Swarm%20Optimized%20Independence%20Estimator%20for%20Blind%20Source%20Separation%20of%20Neurophysiological%20Time%20Series&aulast=Grison%2C%20Agnese&id=DOI:10.1109/TBME.2024.3446806
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Grison%20A
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.23205d42.15f8.4b48.88c1.8b69b6d3b037
RelevancyScore: 1015
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1014.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A Particle Swarm Optimized Independence Estimator for Blind Source Separation of Neurophysiological Time Series
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Grison%2C+Agnese%22">Grison, Agnese</searchLink><br /><searchLink fieldCode="AR" term="%22Clarke%2C+Alexander+Kenneth%22">Clarke, Alexander Kenneth</searchLink><br /><searchLink fieldCode="AR" term="%22Muceli%2C+Silvia%22">Muceli, Silvia</searchLink>, 1981<br /><searchLink fieldCode="AR" term="%22Ibáñez%2C+Jaime%22">Ibáñez, Jaime</searchLink><br /><searchLink fieldCode="AR" term="%22Kundu%2C+Aritra%22">Kundu, Aritra</searchLink><br /><searchLink fieldCode="AR" term="%22Farina%2C+Dario%22">Farina, Dario</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>IEEE Transactions on Biomedical Engineering</i>. 72(1):227-237
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Independent+component+analysis%22">Independent component analysis</searchLink><br /><searchLink fieldCode="DE" term="%22intramuscular+electromyography%22">intramuscular electromyography</searchLink><br /><searchLink fieldCode="DE" term="%22particle+swarm+optimisation%22">particle swarm optimisation</searchLink><br /><searchLink fieldCode="DE" term="%22blind+source+separation%22">blind source separation</searchLink><br /><searchLink fieldCode="DE" term="%22intracortical+recording%22">intracortical recording</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The decomposition of neurophysiological recordings into their constituent neural sources is of major importance to a diverse range of neuroscientific fields and neuroengineering applications. The advent of high density electrode probes and arrays has driven a major need for novel semi-automated and automated blind source separation methodologies that take advantage of the increased spatial resolution and coverage these new devices offer. Independent component analysis (ICA) offers a principled theoretical framework for such algorithms, but implementation inefficiencies often drive poor performance in practice, particularly for sparse sources. Here we observe that the use of a single non-linear optimization function to identify spiking sources with ICA often has a detrimental effect that precludes the recovery and correct separation of all spiking sources in the signal. We go on to propose a projection-pursuit ICA algorithm designed specifically for spiking sources, which uses a particle swarm methodology to adaptively traverse a polynomial family of non-linearities approximating the asymmetric cumulants of the sources. We robustly prove state-of-the-art decomposition performance on recordings from high density intramuscular probes and demonstrate how the particle swarm quickly finds optimal contrast non-linearities across a range of neurophysiological datasets.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/545007" linkWindow="_blank">https://research.chalmers.se/publication/545007</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/544972" linkWindow="_blank">https://research.chalmers.se/publication/544972</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.23205d42.15f8.4b48.88c1.8b69b6d3b037
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/TBME.2024.3446806
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 11
        StartPage: 227
    Subjects:
      – SubjectFull: Independent component analysis
        Type: general
      – SubjectFull: intramuscular electromyography
        Type: general
      – SubjectFull: particle swarm optimisation
        Type: general
      – SubjectFull: blind source separation
        Type: general
      – SubjectFull: intracortical recording
        Type: general
    Titles:
      – TitleFull: A Particle Swarm Optimized Independence Estimator for Blind Source Separation of Neurophysiological Time Series
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Grison, Agnese
      – PersonEntity:
          Name:
            NameFull: Clarke, Alexander Kenneth
      – PersonEntity:
          Name:
            NameFull: Muceli, Silvia
      – PersonEntity:
          Name:
            NameFull: Ibáñez, Jaime
      – PersonEntity:
          Name:
            NameFull: Kundu, Aritra
      – PersonEntity:
          Name:
            NameFull: Farina, Dario
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 00189294
            – Type: issn-print
              Value: 15582531
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 72
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: IEEE Transactions on Biomedical Engineering
              Type: main
ResultId 1