Estimation of frequency-dependent impedances in power grids by deep lstm autoencoder and random forest

Uloženo v:
Podrobná bibliografie
Název: Estimation of frequency-dependent impedances in power grids by deep lstm autoencoder and random forest
Autoři: Bagheri, Azam, 1982, Bongiorno, Massimo, 1976, Gu, Irene Yu-Hua, 1953, Svensson, Jan
Zdroj: Energies. 14(13)
Témata: Random forest regres-sion, Frequency-dependent grid impedance, LSTM autoencoder, Time-series analysis, PRBS, Unsupervised deep learning
Popis: This paper proposes a deep-learning-based method for frequency-dependent grid impedance estimation. Through measurement of voltages and currents at a specific system bus, the estimate of the grid impedance was obtained by first extracting the sequences of the time-dependent features for the measured data using a long short-term memory autoencoder (LSTM-AE) followed by a random forest (RF) regression method to find the nonlinear map function between extracted features and the corresponding grid impedance for a wide range of frequencies. The method was trained via simulation by using time-series measurements (i.e., voltage and current) for different system parameters and verified through several case studies. The obtained results show that: (1) extracting the time-dependent features of the voltage/current data improves the performance of the RF regression method; (2) the RF regression method is robust and allows grid impedance estimation within 1.5 grid cycles; (3) the proposed method can effectively estimate the grid impedance both in steady state and in case of large transients like electrical faults.
Popis souboru: electronic
Přístupová URL adresa: https://research.chalmers.se/publication/524893
https://research.chalmers.se/publication/524893/file/524893_Fulltext.pdf
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/524893#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=19961073&ISBN=&volume=14&issue=13&date=20210101&spage=&pages=&title=Energies&atitle=Estimation%20of%20frequency-dependent%20impedances%20in%20power%20grids%20by%20deep%20lstm%20autoencoder%20and%20random%20forest&aulast=Bagheri%2C%20Azam&id=DOI:10.3390/en14133829
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Bagheri%20A
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.22bf6449.8d29.46fc.83cc.d7918336b58c
RelevancyScore: 954
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 954.003845214844
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Estimation of frequency-dependent impedances in power grids by deep lstm autoencoder and random forest
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Bagheri%2C+Azam%22">Bagheri, Azam</searchLink>, 1982<br /><searchLink fieldCode="AR" term="%22Bongiorno%2C+Massimo%22">Bongiorno, Massimo</searchLink>, 1976<br /><searchLink fieldCode="AR" term="%22Gu%2C+Irene+Yu-Hua%22">Gu, Irene Yu-Hua</searchLink>, 1953<br /><searchLink fieldCode="AR" term="%22Svensson%2C+Jan%22">Svensson, Jan</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Energies</i>. 14(13)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Random+forest+regres-sion%22">Random forest regres-sion</searchLink><br /><searchLink fieldCode="DE" term="%22Frequency-dependent+grid+impedance%22">Frequency-dependent grid impedance</searchLink><br /><searchLink fieldCode="DE" term="%22LSTM+autoencoder%22">LSTM autoencoder</searchLink><br /><searchLink fieldCode="DE" term="%22Time-series+analysis%22">Time-series analysis</searchLink><br /><searchLink fieldCode="DE" term="%22PRBS%22">PRBS</searchLink><br /><searchLink fieldCode="DE" term="%22Unsupervised+deep+learning%22">Unsupervised deep learning</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This paper proposes a deep-learning-based method for frequency-dependent grid impedance estimation. Through measurement of voltages and currents at a specific system bus, the estimate of the grid impedance was obtained by first extracting the sequences of the time-dependent features for the measured data using a long short-term memory autoencoder (LSTM-AE) followed by a random forest (RF) regression method to find the nonlinear map function between extracted features and the corresponding grid impedance for a wide range of frequencies. The method was trained via simulation by using time-series measurements (i.e., voltage and current) for different system parameters and verified through several case studies. The obtained results show that: (1) extracting the time-dependent features of the voltage/current data improves the performance of the RF regression method; (2) the RF regression method is robust and allows grid impedance estimation within 1.5 grid cycles; (3) the proposed method can effectively estimate the grid impedance both in steady state and in case of large transients like electrical faults.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/524893" linkWindow="_blank">https://research.chalmers.se/publication/524893</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/524893/file/524893_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/524893/file/524893_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.22bf6449.8d29.46fc.83cc.d7918336b58c
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3390/en14133829
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Random forest regres-sion
        Type: general
      – SubjectFull: Frequency-dependent grid impedance
        Type: general
      – SubjectFull: LSTM autoencoder
        Type: general
      – SubjectFull: Time-series analysis
        Type: general
      – SubjectFull: PRBS
        Type: general
      – SubjectFull: Unsupervised deep learning
        Type: general
    Titles:
      – TitleFull: Estimation of frequency-dependent impedances in power grids by deep lstm autoencoder and random forest
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Bagheri, Azam
      – PersonEntity:
          Name:
            NameFull: Bongiorno, Massimo
      – PersonEntity:
          Name:
            NameFull: Gu, Irene Yu-Hua
      – PersonEntity:
          Name:
            NameFull: Svensson, Jan
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2021
          Identifiers:
            – Type: issn-print
              Value: 19961073
            – Type: issn-print
              Value: 19961073
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 14
            – Type: issue
              Value: 13
          Titles:
            – TitleFull: Energies
              Type: main
ResultId 1