Estimation of frequency-dependent impedances in power grids by deep lstm autoencoder and random forest
Uložené v:
| Názov: | Estimation of frequency-dependent impedances in power grids by deep lstm autoencoder and random forest |
|---|---|
| Autori: | Bagheri, Azam, 1982, Bongiorno, Massimo, 1976, Gu, Irene Yu-Hua, 1953, Svensson, Jan |
| Zdroj: | Energies. 14(13) |
| Predmety: | Random forest regres-sion, Frequency-dependent grid impedance, LSTM autoencoder, Time-series analysis, PRBS, Unsupervised deep learning |
| Popis: | This paper proposes a deep-learning-based method for frequency-dependent grid impedance estimation. Through measurement of voltages and currents at a specific system bus, the estimate of the grid impedance was obtained by first extracting the sequences of the time-dependent features for the measured data using a long short-term memory autoencoder (LSTM-AE) followed by a random forest (RF) regression method to find the nonlinear map function between extracted features and the corresponding grid impedance for a wide range of frequencies. The method was trained via simulation by using time-series measurements (i.e., voltage and current) for different system parameters and verified through several case studies. The obtained results show that: (1) extracting the time-dependent features of the voltage/current data improves the performance of the RF regression method; (2) the RF regression method is robust and allows grid impedance estimation within 1.5 grid cycles; (3) the proposed method can effectively estimate the grid impedance both in steady state and in case of large transients like electrical faults. |
| Popis súboru: | electronic |
| Prístupová URL adresa: | https://research.chalmers.se/publication/524893 https://research.chalmers.se/publication/524893/file/524893_Fulltext.pdf |
| Databáza: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/524893# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=19961073&ISBN=&volume=14&issue=13&date=20210101&spage=&pages=&title=Energies&atitle=Estimation%20of%20frequency-dependent%20impedances%20in%20power%20grids%20by%20deep%20lstm%20autoencoder%20and%20random%20forest&aulast=Bagheri%2C%20Azam&id=DOI:10.3390/en14133829 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Bagheri%20A Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.22bf6449.8d29.46fc.83cc.d7918336b58c RelevancyScore: 954 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 954.003845214844 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Estimation of frequency-dependent impedances in power grids by deep lstm autoencoder and random forest – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Bagheri%2C+Azam%22">Bagheri, Azam</searchLink>, 1982<br /><searchLink fieldCode="AR" term="%22Bongiorno%2C+Massimo%22">Bongiorno, Massimo</searchLink>, 1976<br /><searchLink fieldCode="AR" term="%22Gu%2C+Irene+Yu-Hua%22">Gu, Irene Yu-Hua</searchLink>, 1953<br /><searchLink fieldCode="AR" term="%22Svensson%2C+Jan%22">Svensson, Jan</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>Energies</i>. 14(13) – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Random+forest+regres-sion%22">Random forest regres-sion</searchLink><br /><searchLink fieldCode="DE" term="%22Frequency-dependent+grid+impedance%22">Frequency-dependent grid impedance</searchLink><br /><searchLink fieldCode="DE" term="%22LSTM+autoencoder%22">LSTM autoencoder</searchLink><br /><searchLink fieldCode="DE" term="%22Time-series+analysis%22">Time-series analysis</searchLink><br /><searchLink fieldCode="DE" term="%22PRBS%22">PRBS</searchLink><br /><searchLink fieldCode="DE" term="%22Unsupervised+deep+learning%22">Unsupervised deep learning</searchLink> – Name: Abstract Label: Description Group: Ab Data: This paper proposes a deep-learning-based method for frequency-dependent grid impedance estimation. Through measurement of voltages and currents at a specific system bus, the estimate of the grid impedance was obtained by first extracting the sequences of the time-dependent features for the measured data using a long short-term memory autoencoder (LSTM-AE) followed by a random forest (RF) regression method to find the nonlinear map function between extracted features and the corresponding grid impedance for a wide range of frequencies. The method was trained via simulation by using time-series measurements (i.e., voltage and current) for different system parameters and verified through several case studies. The obtained results show that: (1) extracting the time-dependent features of the voltage/current data improves the performance of the RF regression method; (2) the RF regression method is robust and allows grid impedance estimation within 1.5 grid cycles; (3) the proposed method can effectively estimate the grid impedance both in steady state and in case of large transients like electrical faults. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/524893" linkWindow="_blank">https://research.chalmers.se/publication/524893</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/524893/file/524893_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/524893/file/524893_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.22bf6449.8d29.46fc.83cc.d7918336b58c |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.3390/en14133829 Languages: – Text: English Subjects: – SubjectFull: Random forest regres-sion Type: general – SubjectFull: Frequency-dependent grid impedance Type: general – SubjectFull: LSTM autoencoder Type: general – SubjectFull: Time-series analysis Type: general – SubjectFull: PRBS Type: general – SubjectFull: Unsupervised deep learning Type: general Titles: – TitleFull: Estimation of frequency-dependent impedances in power grids by deep lstm autoencoder and random forest Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Bagheri, Azam – PersonEntity: Name: NameFull: Bongiorno, Massimo – PersonEntity: Name: NameFull: Gu, Irene Yu-Hua – PersonEntity: Name: NameFull: Svensson, Jan IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2021 Identifiers: – Type: issn-print Value: 19961073 – Type: issn-print Value: 19961073 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 14 – Type: issue Value: 13 Titles: – TitleFull: Energies Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science