Identification of cell type-specific cell-penetrating peptides through in vivo phage display leveraged by next generation sequencing

Gespeichert in:
Bibliographische Detailangaben
Titel: Identification of cell type-specific cell-penetrating peptides through in vivo phage display leveraged by next generation sequencing
Autoren: Kohl, Franziska, Laufkötter, Oliver, Firth, Mike, Krimpenfort, Luc, Mangla, Priyanka, Ansarizadeh, Mohammadhassan, Geylan, Gökçe, 1996, Eklund, Lauri, De Maria, Leonardo, Jakobsson, Lars, Wiseman, John
Quelle: Rekombination och nanostruktur i organiska solceller Biomedicine and Pharmacotherapy. 182
Schlagwörter: In vivo phage display, Bioinformatic analysis, Cell-penetrating peptides, Next generation sequencing, Vascular anomalies
Beschreibung: Vascular anomalies (VA) refer to abnormal blood or lymphatic vessel architecture, most often as a result of dysregulated growth. Venous malformations (VM), a subgroup of VAs, are triggered by activating mutations in the Angiopoietin/TIE2-PI3K/AKT/mTOR signaling pathway with TIE2 L914F (gene name TEK) being one of the most frequent mutations in patients with VMs. Although systemic targeting of the overactivated pathway is possible, it would be a therapeutic advantage to restrict treatment to only the affected lesions. To identify peptides with potential selective binding to TIE2 L914F lesions we applied in vivo phage display to TIE2 L914F-overexpressing endothelial cells (ECs) in a subcutaneous matrigel xenograft mouse model of VMs. By panning for lesion-targeting phages in combination with subcellular fractionation, a screen for cell-penetrating candidate phages was established. Employing Next Generation Sequencing (NGS) and a refined bioinformatic analysis we were able to identify many novel cell-penetrating peptides (CPPs). To pinpoint the most selective and viable CCP candidates a hierarchical clustering algorithm was utilized. This method aggregated CPPs with highly similar sequences into a small number of clusters from which consensus sequences could be derived. Selected candidate CPPs exhibited uptake in TIE2 L914F-expressing human umbilical vein endothelial cells (HUVEC) in culture and were able to deliver siRNA into these cells. In conclusion, our NGS bioinformatic-supported approach led to the identification of novel and selective CPPs capable of transporting a siRNA cargo into targeted cells.
Dateibeschreibung: electronic
Zugangs-URL: https://research.chalmers.se/publication/549218
https://research.chalmers.se/publication/549218/file/549218_Fulltext.pdf
Datenbank: SwePub
Beschreibung
Abstract:Vascular anomalies (VA) refer to abnormal blood or lymphatic vessel architecture, most often as a result of dysregulated growth. Venous malformations (VM), a subgroup of VAs, are triggered by activating mutations in the Angiopoietin/TIE2-PI3K/AKT/mTOR signaling pathway with TIE2 L914F (gene name TEK) being one of the most frequent mutations in patients with VMs. Although systemic targeting of the overactivated pathway is possible, it would be a therapeutic advantage to restrict treatment to only the affected lesions. To identify peptides with potential selective binding to TIE2 L914F lesions we applied in vivo phage display to TIE2 L914F-overexpressing endothelial cells (ECs) in a subcutaneous matrigel xenograft mouse model of VMs. By panning for lesion-targeting phages in combination with subcellular fractionation, a screen for cell-penetrating candidate phages was established. Employing Next Generation Sequencing (NGS) and a refined bioinformatic analysis we were able to identify many novel cell-penetrating peptides (CPPs). To pinpoint the most selective and viable CCP candidates a hierarchical clustering algorithm was utilized. This method aggregated CPPs with highly similar sequences into a small number of clusters from which consensus sequences could be derived. Selected candidate CPPs exhibited uptake in TIE2 L914F-expressing human umbilical vein endothelial cells (HUVEC) in culture and were able to deliver siRNA into these cells. In conclusion, our NGS bioinformatic-supported approach led to the identification of novel and selective CPPs capable of transporting a siRNA cargo into targeted cells.
ISSN:19506007
07533322
DOI:10.1016/j.biopha.2024.117740