Metis: a python-based user interface to collect expert feedback for generative chemistry models

Uloženo v:
Podrobná bibliografie
Název: Metis: a python-based user interface to collect expert feedback for generative chemistry models
Autoři: Menke, Janosch, 1995, Nahal, Yasmine, Bjerrum, Esben Jannik, Kabeshov, Mikhail, Kaski, Samuel, Engkvist, Ola, 1967
Zdroj: Journal of Cheminformatics. 16(1)
Témata: User interface, De novo drug design, Machine learning, Preference learning, Human-in-the-loop
Popis: One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.
Popis souboru: electronic
Přístupová URL adresa: https://research.chalmers.se/publication/542473
https://research.chalmers.se/publication/542473/file/542473_Fulltext.pdf
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/542473#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=1758-2946[TA]+AND+[PG]+AND+2024[PDAT]
    Name: FREE - PubMed Central (ISSN based link)
    Category: fullText
    Text: Full Text
    Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif
    MouseOverText: Check this PubMed for the article full text.
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=17582946&ISBN=&volume=16&issue=1&date=20240101&spage=&pages=&title=Journal of Cheminformatics&atitle=Metis%3A%20a%20python-based%20user%20interface%20to%20collect%20expert%20feedback%20for%20generative%20chemistry%20models&aulast=Menke%2C%20Janosch&id=DOI:10.1186/s13321-024-00892-3
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Menke%20J
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.18b35f1a.461b.4ee4.874e.427ff0ac3688
RelevancyScore: 1014
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1014.41540527344
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Metis: a python-based user interface to collect expert feedback for generative chemistry models
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Menke%2C+Janosch%22">Menke, Janosch</searchLink>, 1995<br /><searchLink fieldCode="AR" term="%22Nahal%2C+Yasmine%22">Nahal, Yasmine</searchLink><br /><searchLink fieldCode="AR" term="%22Bjerrum%2C+Esben+Jannik%22">Bjerrum, Esben Jannik</searchLink><br /><searchLink fieldCode="AR" term="%22Kabeshov%2C+Mikhail%22">Kabeshov, Mikhail</searchLink><br /><searchLink fieldCode="AR" term="%22Kaski%2C+Samuel%22">Kaski, Samuel</searchLink><br /><searchLink fieldCode="AR" term="%22Engkvist%2C+Ola%22">Engkvist, Ola</searchLink>, 1967
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Journal of Cheminformatics</i>. 16(1)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22User+interface%22">User interface</searchLink><br /><searchLink fieldCode="DE" term="%22De+novo+drug+design%22">De novo drug design</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+learning%22">Machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22Preference+learning%22">Preference learning</searchLink><br /><searchLink fieldCode="DE" term="%22Human-in-the-loop%22">Human-in-the-loop</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/542473" linkWindow="_blank">https://research.chalmers.se/publication/542473</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/542473/file/542473_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/542473/file/542473_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.18b35f1a.461b.4ee4.874e.427ff0ac3688
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1186/s13321-024-00892-3
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: User interface
        Type: general
      – SubjectFull: De novo drug design
        Type: general
      – SubjectFull: Machine learning
        Type: general
      – SubjectFull: Preference learning
        Type: general
      – SubjectFull: Human-in-the-loop
        Type: general
    Titles:
      – TitleFull: Metis: a python-based user interface to collect expert feedback for generative chemistry models
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Menke, Janosch
      – PersonEntity:
          Name:
            NameFull: Nahal, Yasmine
      – PersonEntity:
          Name:
            NameFull: Bjerrum, Esben Jannik
      – PersonEntity:
          Name:
            NameFull: Kabeshov, Mikhail
      – PersonEntity:
          Name:
            NameFull: Kaski, Samuel
      – PersonEntity:
          Name:
            NameFull: Engkvist, Ola
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 17582946
            – Type: issn-print
              Value: 17582946
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 16
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: Journal of Cheminformatics
              Type: main
ResultId 1