SHARP BOUNDS ON THE HEIGHT OF K-SEMISTABLE FANO VARIETIES II, THE LOG CASE
Uložené v:
| Názov: | SHARP BOUNDS ON THE HEIGHT OF K-SEMISTABLE FANO VARIETIES II, THE LOG CASE |
|---|---|
| Autori: | Andreasson, Rolf, 1997, Berman, Robert, 1976 |
| Zdroj: | Journal de l'Ecole Polytechnique - Mathematiques. 12:983-1018 |
| Predmety: | heights, Fano varieties, Arakelov geometry, hler-Einstein metrics, K-stability, K & auml |
| Popis: | In our previous work we conjectured-inspired by an algebro-geometric result of Fujita-that the height of an arithmetic Fano variety X of relative dimension n is maximal when X is the projective space lln Z over the integers, endowed with the Fubini-Study metric, if the corresponding complex Fano variety is K-semistable. In this work the conjecture is settled for diagonal hypersurfaces in lln+1 Z . The proof is based on a logarithmic extension of our previous conjecture, of independent interest, which is established for toric log Fano varieties of relative dimension at most three, hyperplane arrangements on lln Z, as well as for general arithmetic orbifold Fano surfaces. |
| Popis súboru: | electronic |
| Prístupová URL adresa: | https://research.chalmers.se/publication/547509 https://research.chalmers.se/publication/547509/file/547509_Fulltext.pdf |
| Databáza: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/547509# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=24297100&ISBN=&volume=12&issue=&date=20250101&spage=983&pages=983-1018&title=Journal de l'Ecole Polytechnique - Mathematiques&atitle=SHARP%20BOUNDS%20ON%20THE%20HEIGHT%20OF%20K-SEMISTABLE%20FANO%20VARIETIES%20II%2C%20THE%20LOG%20CASE&aulast=Andreasson%2C%20Rolf&id=DOI:10.5802/jep.304 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Andreasson%20R Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.156dacf5.6955.413b.90b6.e00d0fbbed4d RelevancyScore: 1115 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1114.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: SHARP BOUNDS ON THE HEIGHT OF K-SEMISTABLE FANO VARIETIES II, THE LOG CASE – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Andreasson%2C+Rolf%22">Andreasson, Rolf</searchLink>, 1997<br /><searchLink fieldCode="AR" term="%22Berman%2C+Robert%22">Berman, Robert</searchLink>, 1976 – Name: TitleSource Label: Source Group: Src Data: <i>Journal de l'Ecole Polytechnique - Mathematiques</i>. 12:983-1018 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22heights%22">heights</searchLink><br /><searchLink fieldCode="DE" term="%22Fano+varieties%22">Fano varieties</searchLink><br /><searchLink fieldCode="DE" term="%22Arakelov+geometry%22">Arakelov geometry</searchLink><br /><searchLink fieldCode="DE" term="%22hler-Einstein+metrics%22">hler-Einstein metrics</searchLink><br /><searchLink fieldCode="DE" term="%22K-stability%22">K-stability</searchLink><br /><searchLink fieldCode="DE" term="%22K+%26+auml%22">K & auml</searchLink> – Name: Abstract Label: Description Group: Ab Data: In our previous work we conjectured-inspired by an algebro-geometric result of Fujita-that the height of an arithmetic Fano variety X of relative dimension n is maximal when X is the projective space lln Z over the integers, endowed with the Fubini-Study metric, if the corresponding complex Fano variety is K-semistable. In this work the conjecture is settled for diagonal hypersurfaces in lln+1 Z . The proof is based on a logarithmic extension of our previous conjecture, of independent interest, which is established for toric log Fano varieties of relative dimension at most three, hyperplane arrangements on lln Z, as well as for general arithmetic orbifold Fano surfaces. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/547509" linkWindow="_blank">https://research.chalmers.se/publication/547509</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/547509/file/547509_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/547509/file/547509_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.156dacf5.6955.413b.90b6.e00d0fbbed4d |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.5802/jep.304 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 36 StartPage: 983 Subjects: – SubjectFull: heights Type: general – SubjectFull: Fano varieties Type: general – SubjectFull: Arakelov geometry Type: general – SubjectFull: hler-Einstein metrics Type: general – SubjectFull: K-stability Type: general – SubjectFull: K & auml Type: general Titles: – TitleFull: SHARP BOUNDS ON THE HEIGHT OF K-SEMISTABLE FANO VARIETIES II, THE LOG CASE Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Andreasson, Rolf – PersonEntity: Name: NameFull: Berman, Robert IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 24297100 – Type: issn-print Value: 2270518X – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 12 Titles: – TitleFull: Journal de l'Ecole Polytechnique - Mathematiques Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science