Optimization and Identification of Lattice Quantizers
Uloženo v:
| Název: | Optimization and Identification of Lattice Quantizers |
|---|---|
| Autoři: | Agrell, Erik, 1965, Pook-Kolb, Daniel, Allen, Bruce |
| Zdroj: | IEEE Transactions on Information Theory. 71(8):6490-6501 |
| Témata: | mean square error, lattice design, numerical optimization, moment of inertia, theta series, Algorithm, stochastic gradient descent, theta image, vector quantization, normalized second moment, laminated lattice, quantization constant, lattice quantization, Voronoi region |
| Popis: | Lattices with minimal normalized second moments are designed using a new numerical optimization algorithm. Starting from a random lower-triangular generator matrix and applying stochastic gradient descent, all elements are updated towards the negative gradient, which makes it the most efficient algorithm proposed so far for this purpose. A graphical illustration of the theta series, called theta image, is introduced and shown to be a powerful tool for converting numerical lattice representations into their underlying exact forms. As a proof of concept, optimized lattices are designed in dimensions up to 16. In all dimensions, the algorithm converges to either the previously best known lattice or a better one. The dual of the 15-dimensional laminated lattice is conjectured to be optimal in its dimension and its exact normalized second moment is computed. |
| Popis souboru: | electronic |
| Přístupová URL adresa: | https://research.chalmers.se/publication/546282 https://research.chalmers.se/publication/546282/file/546282_Fulltext.pdf |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/546282# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=00189448&ISBN=&volume=71&issue=8&date=20250101&spage=6490&pages=6490-6501&title=IEEE Transactions on Information Theory&atitle=Optimization%20and%20Identification%20of%20Lattice%20Quantizers&aulast=Agrell%2C%20Erik&id=DOI:10.1109/TIT.2025.3565218 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Agrell%20E Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.13d11790.2688.4b48.b5ca.3c25b3aacd90 RelevancyScore: 1115 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1114.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Optimization and Identification of Lattice Quantizers – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Agrell%2C+Erik%22">Agrell, Erik</searchLink>, 1965<br /><searchLink fieldCode="AR" term="%22Pook-Kolb%2C+Daniel%22">Pook-Kolb, Daniel</searchLink><br /><searchLink fieldCode="AR" term="%22Allen%2C+Bruce%22">Allen, Bruce</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>IEEE Transactions on Information Theory</i>. 71(8):6490-6501 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22mean+square+error%22">mean square error</searchLink><br /><searchLink fieldCode="DE" term="%22lattice+design%22">lattice design</searchLink><br /><searchLink fieldCode="DE" term="%22numerical+optimization%22">numerical optimization</searchLink><br /><searchLink fieldCode="DE" term="%22moment+of+inertia%22">moment of inertia</searchLink><br /><searchLink fieldCode="DE" term="%22theta+series%22">theta series</searchLink><br /><searchLink fieldCode="DE" term="%22Algorithm%22">Algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22stochastic+gradient+descent%22">stochastic gradient descent</searchLink><br /><searchLink fieldCode="DE" term="%22theta+image%22">theta image</searchLink><br /><searchLink fieldCode="DE" term="%22vector+quantization%22">vector quantization</searchLink><br /><searchLink fieldCode="DE" term="%22normalized+second+moment%22">normalized second moment</searchLink><br /><searchLink fieldCode="DE" term="%22laminated+lattice%22">laminated lattice</searchLink><br /><searchLink fieldCode="DE" term="%22quantization+constant%22">quantization constant</searchLink><br /><searchLink fieldCode="DE" term="%22lattice+quantization%22">lattice quantization</searchLink><br /><searchLink fieldCode="DE" term="%22Voronoi+region%22">Voronoi region</searchLink> – Name: Abstract Label: Description Group: Ab Data: Lattices with minimal normalized second moments are designed using a new numerical optimization algorithm. Starting from a random lower-triangular generator matrix and applying stochastic gradient descent, all elements are updated towards the negative gradient, which makes it the most efficient algorithm proposed so far for this purpose. A graphical illustration of the theta series, called theta image, is introduced and shown to be a powerful tool for converting numerical lattice representations into their underlying exact forms. As a proof of concept, optimized lattices are designed in dimensions up to 16. In all dimensions, the algorithm converges to either the previously best known lattice or a better one. The dual of the 15-dimensional laminated lattice is conjectured to be optimal in its dimension and its exact normalized second moment is computed. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/546282" linkWindow="_blank">https://research.chalmers.se/publication/546282</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/546282/file/546282_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/546282/file/546282_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.13d11790.2688.4b48.b5ca.3c25b3aacd90 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/TIT.2025.3565218 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 12 StartPage: 6490 Subjects: – SubjectFull: mean square error Type: general – SubjectFull: lattice design Type: general – SubjectFull: numerical optimization Type: general – SubjectFull: moment of inertia Type: general – SubjectFull: theta series Type: general – SubjectFull: Algorithm Type: general – SubjectFull: stochastic gradient descent Type: general – SubjectFull: theta image Type: general – SubjectFull: vector quantization Type: general – SubjectFull: normalized second moment Type: general – SubjectFull: laminated lattice Type: general – SubjectFull: quantization constant Type: general – SubjectFull: lattice quantization Type: general – SubjectFull: Voronoi region Type: general Titles: – TitleFull: Optimization and Identification of Lattice Quantizers Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Agrell, Erik – PersonEntity: Name: NameFull: Pook-Kolb, Daniel – PersonEntity: Name: NameFull: Allen, Bruce IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 00189448 – Type: issn-print Value: 15579654 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 71 – Type: issue Value: 8 Titles: – TitleFull: IEEE Transactions on Information Theory Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science