Spectral Invariants of Integrable Polygons

Uloženo v:
Podrobná bibliografie
Název: Spectral Invariants of Integrable Polygons
Autoři: Mårdby, Gustav, 1999, Rowlett, Julie, 1978
Zdroj: Journal of Fourier Analysis and Applications. 31(6)
Témata: Polygonal billiard, Helmholtz equation, Zeta-regularized determinant, Laplace eigenvalues, Closed geodesic, Polygonal domain, Heat trace, Laplace spectrum, Spectral zeta function
Popis: An integrable polygon is one whose interior angles are fractions of π; that is to say of the form π n for positive integers n. We consider the Laplace spectrum on these polygons with the Dirichlet and Neumann boundary conditions, and we obtain new spectral invariants for these polygons. This includes new expressions for the spectral zeta function and zeta-regularized determinant as well as a new spectral invariant contained in the short-time asymptotic expansion of the heat trace. Moreover, we demonstrate relationships between the short-time heat trace invariants of general polygonal domains (not necessarily integrable) and smoothly bounded domains and pose conjectures and further related directions of investigation.
Popis souboru: electronic
Přístupová URL adresa: https://research.chalmers.se/publication/549109
https://research.chalmers.se/publication/549109/file/549109_Fulltext.pdf
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/549109#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=15315851&ISBN=&volume=31&issue=6&date=20250101&spage=&pages=&title=Journal of Fourier Analysis and Applications&atitle=Spectral%20Invariants%20of%20Integrable%20Polygons&aulast=M%C3%A5rdby%2C%20Gustav&id=DOI:10.1007/s00041-025-10202-6
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=M%C3%A5rdby%20G
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.0b84f06e.d22b.4581.be29.11333d3c0f9a
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Spectral Invariants of Integrable Polygons
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Mårdby%2C+Gustav%22">Mårdby, Gustav</searchLink>, 1999<br /><searchLink fieldCode="AR" term="%22Rowlett%2C+Julie%22">Rowlett, Julie</searchLink>, 1978
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Journal of Fourier Analysis and Applications</i>. 31(6)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Polygonal+billiard%22">Polygonal billiard</searchLink><br /><searchLink fieldCode="DE" term="%22Helmholtz+equation%22">Helmholtz equation</searchLink><br /><searchLink fieldCode="DE" term="%22Zeta-regularized+determinant%22">Zeta-regularized determinant</searchLink><br /><searchLink fieldCode="DE" term="%22Laplace+eigenvalues%22">Laplace eigenvalues</searchLink><br /><searchLink fieldCode="DE" term="%22Closed+geodesic%22">Closed geodesic</searchLink><br /><searchLink fieldCode="DE" term="%22Polygonal+domain%22">Polygonal domain</searchLink><br /><searchLink fieldCode="DE" term="%22Heat+trace%22">Heat trace</searchLink><br /><searchLink fieldCode="DE" term="%22Laplace+spectrum%22">Laplace spectrum</searchLink><br /><searchLink fieldCode="DE" term="%22Spectral+zeta+function%22">Spectral zeta function</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: An integrable polygon is one whose interior angles are fractions of π; that is to say of the form π n for positive integers n. We consider the Laplace spectrum on these polygons with the Dirichlet and Neumann boundary conditions, and we obtain new spectral invariants for these polygons. This includes new expressions for the spectral zeta function and zeta-regularized determinant as well as a new spectral invariant contained in the short-time asymptotic expansion of the heat trace. Moreover, we demonstrate relationships between the short-time heat trace invariants of general polygonal domains (not necessarily integrable) and smoothly bounded domains and pose conjectures and further related directions of investigation.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/549109" linkWindow="_blank">https://research.chalmers.se/publication/549109</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/549109/file/549109_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/549109/file/549109_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.0b84f06e.d22b.4581.be29.11333d3c0f9a
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/s00041-025-10202-6
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Polygonal billiard
        Type: general
      – SubjectFull: Helmholtz equation
        Type: general
      – SubjectFull: Zeta-regularized determinant
        Type: general
      – SubjectFull: Laplace eigenvalues
        Type: general
      – SubjectFull: Closed geodesic
        Type: general
      – SubjectFull: Polygonal domain
        Type: general
      – SubjectFull: Heat trace
        Type: general
      – SubjectFull: Laplace spectrum
        Type: general
      – SubjectFull: Spectral zeta function
        Type: general
    Titles:
      – TitleFull: Spectral Invariants of Integrable Polygons
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Mårdby, Gustav
      – PersonEntity:
          Name:
            NameFull: Rowlett, Julie
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 15315851
            – Type: issn-print
              Value: 10695869
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 31
            – Type: issue
              Value: 6
          Titles:
            – TitleFull: Journal of Fourier Analysis and Applications
              Type: main
ResultId 1