Interpretable Battery Cycle Life Range Prediction Using Early Cell Degradation Data
Saved in:
| Title: | Interpretable Battery Cycle Life Range Prediction Using Early Cell Degradation Data |
|---|---|
| Authors: | Zhang, Huang, 1993, Su, Yang, Altaf, Faisal, 1982, Wik, Torsten, 1968, Gros, Sebastien, 1977 |
| Source: | Klassificering och optimal hantering av 2nd life xEV-batterier IEEE Transactions on Transportation Electrification. 9(2):2669-2682 |
| Subject Terms: | quantile regression forest, Lithium-ion battery, cycle life early prediction, prediction interval, interpretable machine learning. |
| Description: | Battery cycle life prediction using early degradation data has many potential applications throughout the battery product life cycle. For that reason, various data-driven methods have been proposed for point prediction of battery cycle life with minimum knowledge of the battery degradation mechanisms. However, managing the rapidly increasing amounts of batteries at end-of-life with lower economic and technical risk requires prediction of cycle life with quantified uncertainty, which is still lacking. The interpretability (i.e., the reason for high prediction accuracy) of these advanced data-driven methods is also worthy of investigation. Here, a Quantile Regression Forest (QRF) model, having the advantage of not assuming any specific distribution of cycle life, is introduced to make cycle life range prediction with uncertainty quantified as the width of the prediction interval, in addition to point predictions with high accuracy. The hyperparameters of the QRF model are optimized with a proposed alpha-logistic-weighted criterion so that the coverage probabilities associated with the prediction intervals are calibrated. The interpretability of the final QRF model is explored with two global model-agnostic methods, namely permutation importance and partial dependence plot. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/537669 https://research.chalmers.se/publication/533958 https://research.chalmers.se/publication/537669/file/537669_Fulltext.pdf |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/537669# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=23327782&ISBN=&volume=9&issue=2&date=20230101&spage=2669&pages=2669-2682&title=Klassificering och optimal hantering av 2nd life xEV-batterier IEEE Transactions on Transportation Electrification&atitle=Interpretable%20Battery%20Cycle%20Life%20Range%20Prediction%20Using%20Early%20Cell%20Degradation%20Data&aulast=Zhang%2C%20Huang&id=DOI:10.1109/TTE.2022.3226683 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zhang%20H Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.043b8229.6c05.4ad8.9171.cad4124e7550 RelevancyScore: 1034 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1033.77954101563 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Interpretable Battery Cycle Life Range Prediction Using Early Cell Degradation Data – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Zhang%2C+Huang%22">Zhang, Huang</searchLink>, 1993<br /><searchLink fieldCode="AR" term="%22Su%2C+Yang%22">Su, Yang</searchLink><br /><searchLink fieldCode="AR" term="%22Altaf%2C+Faisal%22">Altaf, Faisal</searchLink>, 1982<br /><searchLink fieldCode="AR" term="%22Wik%2C+Torsten%22">Wik, Torsten</searchLink>, 1968<br /><searchLink fieldCode="AR" term="%22Gros%2C+Sebastien%22">Gros, Sebastien</searchLink>, 1977 – Name: TitleSource Label: Source Group: Src Data: <i>Klassificering och optimal hantering av 2nd life xEV-batterier IEEE Transactions on Transportation Electrification</i>. 9(2):2669-2682 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22quantile+regression+forest%22">quantile regression forest</searchLink><br /><searchLink fieldCode="DE" term="%22Lithium-ion+battery%22">Lithium-ion battery</searchLink><br /><searchLink fieldCode="DE" term="%22cycle+life+early+prediction%22">cycle life early prediction</searchLink><br /><searchLink fieldCode="DE" term="%22prediction+interval%22">prediction interval</searchLink><br /><searchLink fieldCode="DE" term="%22interpretable+machine+learning%2E%22">interpretable machine learning.</searchLink> – Name: Abstract Label: Description Group: Ab Data: Battery cycle life prediction using early degradation data has many potential applications throughout the battery product life cycle. For that reason, various data-driven methods have been proposed for point prediction of battery cycle life with minimum knowledge of the battery degradation mechanisms. However, managing the rapidly increasing amounts of batteries at end-of-life with lower economic and technical risk requires prediction of cycle life with quantified uncertainty, which is still lacking. The interpretability (i.e., the reason for high prediction accuracy) of these advanced data-driven methods is also worthy of investigation. Here, a Quantile Regression Forest (QRF) model, having the advantage of not assuming any specific distribution of cycle life, is introduced to make cycle life range prediction with uncertainty quantified as the width of the prediction interval, in addition to point predictions with high accuracy. The hyperparameters of the QRF model are optimized with a proposed alpha-logistic-weighted criterion so that the coverage probabilities associated with the prediction intervals are calibrated. The interpretability of the final QRF model is explored with two global model-agnostic methods, namely permutation importance and partial dependence plot. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/537669" linkWindow="_blank">https://research.chalmers.se/publication/537669</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/533958" linkWindow="_blank">https://research.chalmers.se/publication/533958</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/537669/file/537669_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/537669/file/537669_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.043b8229.6c05.4ad8.9171.cad4124e7550 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/TTE.2022.3226683 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 14 StartPage: 2669 Subjects: – SubjectFull: quantile regression forest Type: general – SubjectFull: Lithium-ion battery Type: general – SubjectFull: cycle life early prediction Type: general – SubjectFull: prediction interval Type: general – SubjectFull: interpretable machine learning. Type: general Titles: – TitleFull: Interpretable Battery Cycle Life Range Prediction Using Early Cell Degradation Data Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Zhang, Huang – PersonEntity: Name: NameFull: Su, Yang – PersonEntity: Name: NameFull: Altaf, Faisal – PersonEntity: Name: NameFull: Wik, Torsten – PersonEntity: Name: NameFull: Gros, Sebastien IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-print Value: 23327782 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 9 – Type: issue Value: 2 Titles: – TitleFull: Klassificering och optimal hantering av 2nd life xEV-batterier IEEE Transactions on Transportation Electrification Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science