Interpretable Battery Cycle Life Range Prediction Using Early Cell Degradation Data

Saved in:
Bibliographic Details
Title: Interpretable Battery Cycle Life Range Prediction Using Early Cell Degradation Data
Authors: Zhang, Huang, 1993, Su, Yang, Altaf, Faisal, 1982, Wik, Torsten, 1968, Gros, Sebastien, 1977
Source: Klassificering och optimal hantering av 2nd life xEV-batterier IEEE Transactions on Transportation Electrification. 9(2):2669-2682
Subject Terms: quantile regression forest, Lithium-ion battery, cycle life early prediction, prediction interval, interpretable machine learning.
Description: Battery cycle life prediction using early degradation data has many potential applications throughout the battery product life cycle. For that reason, various data-driven methods have been proposed for point prediction of battery cycle life with minimum knowledge of the battery degradation mechanisms. However, managing the rapidly increasing amounts of batteries at end-of-life with lower economic and technical risk requires prediction of cycle life with quantified uncertainty, which is still lacking. The interpretability (i.e., the reason for high prediction accuracy) of these advanced data-driven methods is also worthy of investigation. Here, a Quantile Regression Forest (QRF) model, having the advantage of not assuming any specific distribution of cycle life, is introduced to make cycle life range prediction with uncertainty quantified as the width of the prediction interval, in addition to point predictions with high accuracy. The hyperparameters of the QRF model are optimized with a proposed alpha-logistic-weighted criterion so that the coverage probabilities associated with the prediction intervals are calibrated. The interpretability of the final QRF model is explored with two global model-agnostic methods, namely permutation importance and partial dependence plot.
File Description: electronic
Access URL: https://research.chalmers.se/publication/537669
https://research.chalmers.se/publication/533958
https://research.chalmers.se/publication/537669/file/537669_Fulltext.pdf
Database: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/537669#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=23327782&ISBN=&volume=9&issue=2&date=20230101&spage=2669&pages=2669-2682&title=Klassificering och optimal hantering av 2nd life xEV-batterier IEEE Transactions on Transportation Electrification&atitle=Interpretable%20Battery%20Cycle%20Life%20Range%20Prediction%20Using%20Early%20Cell%20Degradation%20Data&aulast=Zhang%2C%20Huang&id=DOI:10.1109/TTE.2022.3226683
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zhang%20H
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.043b8229.6c05.4ad8.9171.cad4124e7550
RelevancyScore: 1034
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1033.77954101563
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Interpretable Battery Cycle Life Range Prediction Using Early Cell Degradation Data
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Zhang%2C+Huang%22">Zhang, Huang</searchLink>, 1993<br /><searchLink fieldCode="AR" term="%22Su%2C+Yang%22">Su, Yang</searchLink><br /><searchLink fieldCode="AR" term="%22Altaf%2C+Faisal%22">Altaf, Faisal</searchLink>, 1982<br /><searchLink fieldCode="AR" term="%22Wik%2C+Torsten%22">Wik, Torsten</searchLink>, 1968<br /><searchLink fieldCode="AR" term="%22Gros%2C+Sebastien%22">Gros, Sebastien</searchLink>, 1977
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Klassificering och optimal hantering av 2nd life xEV-batterier IEEE Transactions on Transportation Electrification</i>. 9(2):2669-2682
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22quantile+regression+forest%22">quantile regression forest</searchLink><br /><searchLink fieldCode="DE" term="%22Lithium-ion+battery%22">Lithium-ion battery</searchLink><br /><searchLink fieldCode="DE" term="%22cycle+life+early+prediction%22">cycle life early prediction</searchLink><br /><searchLink fieldCode="DE" term="%22prediction+interval%22">prediction interval</searchLink><br /><searchLink fieldCode="DE" term="%22interpretable+machine+learning%2E%22">interpretable machine learning.</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Battery cycle life prediction using early degradation data has many potential applications throughout the battery product life cycle. For that reason, various data-driven methods have been proposed for point prediction of battery cycle life with minimum knowledge of the battery degradation mechanisms. However, managing the rapidly increasing amounts of batteries at end-of-life with lower economic and technical risk requires prediction of cycle life with quantified uncertainty, which is still lacking. The interpretability (i.e., the reason for high prediction accuracy) of these advanced data-driven methods is also worthy of investigation. Here, a Quantile Regression Forest (QRF) model, having the advantage of not assuming any specific distribution of cycle life, is introduced to make cycle life range prediction with uncertainty quantified as the width of the prediction interval, in addition to point predictions with high accuracy. The hyperparameters of the QRF model are optimized with a proposed alpha-logistic-weighted criterion so that the coverage probabilities associated with the prediction intervals are calibrated. The interpretability of the final QRF model is explored with two global model-agnostic methods, namely permutation importance and partial dependence plot.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/537669" linkWindow="_blank">https://research.chalmers.se/publication/537669</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/533958" linkWindow="_blank">https://research.chalmers.se/publication/533958</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/537669/file/537669_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/537669/file/537669_Fulltext.pdf</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.043b8229.6c05.4ad8.9171.cad4124e7550
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/TTE.2022.3226683
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 14
        StartPage: 2669
    Subjects:
      – SubjectFull: quantile regression forest
        Type: general
      – SubjectFull: Lithium-ion battery
        Type: general
      – SubjectFull: cycle life early prediction
        Type: general
      – SubjectFull: prediction interval
        Type: general
      – SubjectFull: interpretable machine learning.
        Type: general
    Titles:
      – TitleFull: Interpretable Battery Cycle Life Range Prediction Using Early Cell Degradation Data
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zhang, Huang
      – PersonEntity:
          Name:
            NameFull: Su, Yang
      – PersonEntity:
          Name:
            NameFull: Altaf, Faisal
      – PersonEntity:
          Name:
            NameFull: Wik, Torsten
      – PersonEntity:
          Name:
            NameFull: Gros, Sebastien
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 23327782
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 9
            – Type: issue
              Value: 2
          Titles:
            – TitleFull: Klassificering och optimal hantering av 2nd life xEV-batterier IEEE Transactions on Transportation Electrification
              Type: main
ResultId 1