Injectable bioresorbable conductive hydrogels for multimodal brain tumor electroimmunotherapy

Gespeichert in:
Bibliographische Detailangaben
Titel: Injectable bioresorbable conductive hydrogels for multimodal brain tumor electroimmunotherapy
Autoren: Yadav, Amit Singh, Aydemir, Umut, Hellman, Karin, Ekström, Peter, Mousa, Abdelrazek H, Li, Jiaxin, Shameem, Muhammad Anwar, Dicko, Cedric, Bengzon, Johan, Ek, Fredrik, Hjort, Martin, Olsson, Roger
Weitere Verfasser: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), MultiPark: Multidisciplinary research focused on Parkinson's disease, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), MultiPark: Multidisciplinary research focused on Parkinson's disease, Originator, Lund University, Faculty of Medicine, Department of Experimental Medical Science, Chemical Biology and Therapeutics, Lunds universitet, Medicinska fakulteten, Institutionen för experimentell medicinsk vetenskap, Kemisk biologi med inriktning mot läkemedelsutveckling, Originator, Lund University, Faculty of Medicine, Department of Experimental Medical Science, Lunds universitet, Medicinska fakulteten, Institutionen för experimentell medicinsk vetenskap, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Science, Department of Physics, Particle and nuclear physics, Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Partikel- och kärnfysik, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section I, Tumor microenvironment, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion I, Tumörmikromiljö, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Neurosurgery, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Neurokirurgi, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), StemTherapy: National Initiative on Stem Cells for Regenerative Therapy, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), StemTherapy: National Initiative on Stem Cells for Regenerative Therapy, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Originator, Lund University, Faculty of Medicine, Department of Laboratory Medicine, Division of stem cell research, Stem Cell Center, Lunds universitet, Medicinska fakulteten, Institutionen för laboratoriemedicin, Avdelningen för stamcellsforskning, Stamcellscentrum (SCC), Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Food and Bio, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Livsmedel och bioteknik, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator, Lund University, Faculty of Science, Department of Chemistry, Center for Molecular Protein Science, Pure and Applied Biochemistry, Lunds universitet, Naturvetenskapliga fakulteten, Kemiska institutionen, Centrum för Molekylär Proteinvetenskap, Tillämpad biokemi, Originator, Lund University, Faculty of Science, Department of Chemistry, Lunds universitet, Naturvetenskapliga fakulteten, Kemiska institutionen, Originator, Lund University, Faculty of Engineering, LTH, Other operations, LTH, Lund Laser Centre, LLC, Lunds universitet, Lunds Tekniska Högskola, Annan verksamhet, LTH, Lunds lasercentrum, LLC, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Photon Science and Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Avancerade ljuskällor, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator, Lund University, Profile areas and other strong research environments, Other Strong Research Environments, LUCC: Lund University Cancer Centre, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Övriga starka forskningsmiljöer, LUCC: Lunds universitets cancercentrum, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Epilepsy Center, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Epilepsicentrum, Originator, Lund University, Faculty of Science, Department of Chemistry, Centre for Analysis and Synthesis, Lunds universitet, Naturvetenskapliga fakulteten, Kemiska institutionen, Centrum för analys och syntes, Originator
Quelle: Nature Communications. 16(1)
Schlagwörter: Medical and Health Sciences, Clinical Medicine, Cancer and Oncology, Medicin och hälsovetenskap, Klinisk medicin, Cancer och onkologi
Beschreibung: Current electrode technologies are too rigid for safe and effective delivery of electrotherapy in the brain, and patients with glioblastoma continue to face a devastating prognosis, with median survival stalled at 15 months despite intensive treatment with surgery, radiation, and chemotherapy. But these conventional approaches potentially compromise immune function, underscoring the urgent need for therapies that activate, rather than suppress, the immune system. Therefore, we introduce injectable conductive hydrogels engineered to match the softness of brain tissue while exhibiting electrical conductivities up to three orders of magnitude higher than any previously reported injectable hydrogels. They can be implanted through minimally invasive syringe capillaries as narrow as 30 µm-avoiding brain tissue damage-and via convection-enhanced delivery (CED) or endovascular catheters, the latter potentially eliminating the need for open brain surgery. Additionally, it can drape a resection cavity to eliminate residual tumor cells. In human glioblastoma tumors in the chicken chorioallantoic membrane model, implantation of the electrode using CED, followed by irreversible electroporation, obliterated tumors within three days. Other injection techniques impaired tumor growth, induced immunogenic cell death, and a robust infiltration of helper and cytotoxic T cells, alongside macrophages, highlighting the immune-activating and tumor-targeting capabilities.
Zugangs-URL: https://doi.org/10.1038/s41467-025-65785-x
Datenbank: SwePub
Beschreibung
Abstract:Current electrode technologies are too rigid for safe and effective delivery of electrotherapy in the brain, and patients with glioblastoma continue to face a devastating prognosis, with median survival stalled at 15 months despite intensive treatment with surgery, radiation, and chemotherapy. But these conventional approaches potentially compromise immune function, underscoring the urgent need for therapies that activate, rather than suppress, the immune system. Therefore, we introduce injectable conductive hydrogels engineered to match the softness of brain tissue while exhibiting electrical conductivities up to three orders of magnitude higher than any previously reported injectable hydrogels. They can be implanted through minimally invasive syringe capillaries as narrow as 30 µm-avoiding brain tissue damage-and via convection-enhanced delivery (CED) or endovascular catheters, the latter potentially eliminating the need for open brain surgery. Additionally, it can drape a resection cavity to eliminate residual tumor cells. In human glioblastoma tumors in the chicken chorioallantoic membrane model, implantation of the electrode using CED, followed by irreversible electroporation, obliterated tumors within three days. Other injection techniques impaired tumor growth, induced immunogenic cell death, and a robust infiltration of helper and cytotoxic T cells, alongside macrophages, highlighting the immune-activating and tumor-targeting capabilities.
ISSN:20411723
DOI:10.1038/s41467-025-65785-x